Impact of Humic Acid on the Morphological Components and Growth Parameters of Wheat (Triticum Aestivum L.) Under Dry Climate of Uthal
DOI:
https://doi.org/10.38211/joarps.2024.05.244Keywords:
humic acid, Soil properties, morphology, Wheat, Wheat, heat, late sowing, biological yield, grain yieldAbstract
Humic acid is natural biological organic, which has a high effect on plant growth and quality. However, the mechanisms of the promoting effect of humic acid on the morphological components, growth and yield parameters were rarely reported. In this study, the effects of soil application of humic acid on the morphological components and growth parameters of wheat under dry climate were explored. Randomized complete block design (RCBD) with five treatments of humic acid and replicated three time, T1=control, T2= 4.5kgha-1, T3= 6 kgha-1, T4= 9.5 kgha-1, T5= 12 kgha-1 and T6= 14.5 kgha-1. Findings of this study indicated that with increasing application of humic acid growth and yield also increases plant height (21.97%), spike weight (157%), leaf area (34.12%), grain spike-1 (93%), grain yield (49.36%) and biological yield (80.34), though pH of soil also increased. While; results of NO3-N and K were also significantly different under different level of humic acid and mean maximum were recorded in T6 (25% and 48%) in comparison of T1, T2, T3, T4 and T5. Conclusively; this study revealed that application of humic acid at the rate of 14.5 kg ha-1 could improve the growth and yield parameters of wheat and soil fertility.
Downloads
References
Akcin, A., & Akcin, T. A. (2019). Protective effects of humic acid against chromium stress in wheat (Triticum aestivum L. cv. Delabrad-2). Journal of International Environmental Application and Science, 14(2), 50-58.
Anwar, S., Khan, I., Hussain, S., Anjum, M.M., Iqbal, B., Hussain, A. and Ali, N. (2021). 19. Wheat response to different levels of humic acid and brassinolide. Pure and Applied Biology (PAB), 5(4), 822-829. DOI: https://doi.org/10.19045/bspab.2016.50103
Arjumend, T., Abbasi, M. K., & Rafique, E. (2015). Effects of lignite-derived humic acid on some selected soil properties, growth and nutrient uptake of wheat (Triticum aestivum L.) grown under greenhouse conditions. Pakistan Journal of Botany, 47(6), 2231-2238.
Arslan, E., Agar, G., & Aydin, M. (2021). Humic acid as a biostimulant in improving drought tolerance in wheat: the expression patterns of drought-related genes. Plant Molecular Biology Reporter, 1-12. DOI: https://doi.org/10.1007/s11105-020-01266-3
Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, 4, 848621. DOI: https://doi.org/10.3389/fagro.2022.848621
Bybordi, A., & Ebrahimian, E. (2013). Growth, yield and quality components of canola fertilized with urea and zeolite. Communications in Soil Science and Plant Analysis, 44(19), 2896-2915. DOI: https://doi.org/10.1080/00103624.2013.823986
De-Melo, B. A. G., Motta, F. L., & Santana, M. H. A. (2016). Humic acids: structural properties and multiple functionalities for novel technological developments. International journal Materials Science and Engineering: C, 62, 967-974. DOI: https://doi.org/10.1016/j.msec.2015.12.001
Estefan, George, Rolf Sommer, and John Ryan. (2013). Methods of soil, plant, and water analysis." A manual for the West Asia and North Africa region 3 (2013): 65-119
Fan, H. M., Wang, X. W., Sun, X., Li, Y. Y., Sun, X. Z., & Zheng, C. S. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 177, 118-123. DOI: https://doi.org/10.1016/j.scienta.2014.05.010
Fatima, N., Jamal, A., Huang, Z., Liaquat, R., Ahmad, B., Haider, R., & Sillanpää, M. (2021). Extraction and chemical characterization of humic acid from nitric acid treated lignite and bituminous coal samples. Sustainability, 13(16), 8969. DOI: https://doi.org/10.3390/su13168969
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. John wiley & sons.
Hegab, R. H., Fawy, H. A. E. A., & Habib, A. A. M. (2020). Evaluates effect of amino acids, humic acid and antioxidants as foliar application on the biochemical content and productivity of wheat under north sinai soils conditions. American Journal of Agriculture and Forestry, 8(4), 167-174. DOI: https://doi.org/10.11648/j.ajaf.20200804.19
Iqbal, M. A., Rahim, J., Naeem, W., Hassan, S., Khattab, Y., & Ayman, E. S. (2021). A. Rainfed winter wheat (Triticum aestivum L.) cultivars respond differently to integrated fertilization in Pakistan. Journal Fresenius Enviromental Bull, 30, 3115-3121.
Jackson, M. L. (2005). Soil chemical analysis: advanced course: a manual of methods useful for instruction and research in soil chemistry, physical chemistry of soils, soil fertility, and soil genesis. UW-Madison Libraries parallel press.
Kalhoro, S. A., Ding, K., Zhang, B., Chen, W., Hua, R., Shar, A. H., & Xu, X. (2019). Soil infiltration rate of forestland and grassland over different vegetation restoration periods at Loess Plateau in northern hilly areas of China. Landscape and Ecological Engineering, 15, 91-99. DOI: https://doi.org/10.1007/s11355-018-0363-0
Kalhoro, S. A., Xu, X., Ding, K., Chen, W., Shar, A. G., & Rashid, M. (2018). The effects of different land uses on soil hydraulic properties in the Loess Plateau, Northern China. Land degradation & development, 29(11), 3907-3916. DOI: https://doi.org/10.1002/ldr.3138
Kalhoro, S. A., Xu, X., Chen, W., Hua, R., Raza, S., & Ding, K. (2017). Effects of different land-use systems on soil aggregates: a case study of the Loess Plateau (Northern China). Sustainability, 9(8), 1349. DOI: https://doi.org/10.3390/su9081349
Khan, R. U., M. Z. Khan, A. Khan, S. Saba, F. Hussain and I. U. Jan. (2018). Effect of humic acid on growth and crop nutrient status of wheat on two different soils. Journal Plant Nutrition 41(4): 453-460. DOI: https://doi.org/10.1080/01904167.2017.1385807
Khan, Z. A., Koondhar, M. A., Khan, I., Ali, U., & Tianjun, L. (2021). Dynamic linkage between industrialization, energy consumption, carbon emission, and agricultural products export of Pakistan: an ARDL approach. Journal of Environmental Science and Pollution Research, 1-13. DOI: https://doi.org/10.1007/s11356-021-13738-4
Khattak, R. A., & Muhammad, D. (2013). Mechanism (s) of humic acid induced beneficial effects in salt-affected soils. Scientific Research and Essays, 8(21), 932-939.
Li, C., Dhital, S., & Gidley, M. J. (2022). High-amylose wheat bread with reduced in vitro digestion rate and enhanced resistant starch content. Food Hydrocolloids, 123, 107181. DOI: https://doi.org/10.1016/j.foodhyd.2021.107181
Li, Y., F. fang, J. Wei, X. Wu, R. Cui, G. Li, F. Zheng, and D. Tan. (2019). Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut. Sciences. Report. 56(3), 12-10. DOI: https://doi.org/10.1038/s41598-019-48620-4
Mahmoud, A., Salem, A. H., Aly, R. M., El-Maaboud, A., & Sh, M. (2018). Grain quality and protein yield of three bread wheat cultivars as affected by some humic acid and compost fertilizer treatments under newly sandy soil conditions. Zagazig Journal of Agricultural Research, 45(3), 809-819. DOI: https://doi.org/10.21608/zjar.2018.49118
Maji, D., Misra, P., Singh, S., & Kalra, A. (2017). Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied soil ecology, 110, 97-108. DOI: https://doi.org/10.1016/j.apsoil.2016.10.008
Malik, R., & Ali, M. (2015). The impact of urbanization on agriculture sector: a case study of Peshawar, Pakistan. Journal of resources development and management, 8, 79-85.
Marzadori, C., Francioso, O., Ciavatta, C., & Gessa, C. (2000). Activity and stability of jack bean urease in the presence of peat humic acids obtained using different extractants. Biology and fertility of soils, 32(5), 415-420. DOI: https://doi.org/10.1007/s003740000272
Mohammed, M. H., Meawad, A. A. A., El-Mogy, E. E. A. M., & Abdelkader, M. (2019). Growth, yield components and chemical constituents of Stevia rebaudiana Bert. as affected by humic acid and NPK fertilization rates. Zagazig Journal of Agricultural Research, 46(1), 13-26. DOI: https://doi.org/10.21608/zjar.2019.40172
Muhammad, T., Khalid, N., & Muhammad, U. (2014). Impact of humicacid on the morphology and yield of wheat (Triticum aestivum L.). World Applied Sciences Journal, 30(4), 475-480.
Muindi, c. m. (2019). Effects of integrating farmyard manure, starter nitrogen, phosphorus and zinc on nodulation, growth and yield in green grams in kwela county, kenya. 26(5)-25.
Nasiroleslami, E., Mozafari, H., Sadeghi-Shoae, M., Habibi, D., & Sani, B. (2021). Changes in yield, protein, minerals, and fatty acid profile of wheat (Triticum aestivum L.) under fertilizer management involving application of nitrogen, humic acid, and seaweed extract. Journal of Soil Science and Plant Nutrition, 21(4), 2642-2651. DOI: https://doi.org/10.1007/s42729-021-00552-7
Nordi da Silva, J. M., &, N. (2002). Principais critérios utilizados por pescadores artesanais na taxonomia folk dos peixes do estuário do rio Mamanguape, Paraíba-Brasil. Interciencia, 27(11), 607-612.
Olaetxea, M., Mora, V., Baigorri, R., Zamarreño, A. M., & García-Mina, J. M. (2020). The Singular molecular conformation of humic acids in solution influences their ability to enhance root hydraulic conductivity and plant growth. Molecules, 26(1), 3. DOI: https://doi.org/10.3390/molecules26010003
Poole, N., Donovan, J., & Erenstein, O. (2021). Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Policy, 100, 101976. DOI: https://doi.org/10.1016/j.foodpol.2020.101976
Schopf, M., Wehrli, M. C., Becker, T., Jekle, M., & Scherf, K. A. (2021). Fundamental characterization of wheat gluten. European Food Research and Technology, 247, 985-997. DOI: https://doi.org/10.1007/s00217-020-03680-z
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2, 1-14. DOI: https://doi.org/10.1186/2193-1801-2-587
Sible, C. N., Seebauer, J. R., & Below, F. E. (2021). Plant biostimulants: A categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy, 11(7), 1297. DOI: https://doi.org/10.3390/agronomy11071297
Turgay, O.C., A. Karaca, S. Unver and N. Tamer. (2011). Effects of coal- derived humic substance on some soil properties and bread wheat yield. Journal of Soil Science Plant Animal. 42: 1050-1070. DOI: https://doi.org/10.1080/00103624.2011.562586
Usman, M. (2016). Contribution of agriculture sector in the GDP growth rate of Pakistan. Journal of Global Economics, 4(2), 1-3. DOI: https://doi.org/10.4172/2375-4389.1000184
Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment, 612, 522-537 DOI: https://doi.org/10.1016/j.scitotenv.2017.08.095
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 siraj Ahmed, Shahmir Ali Kalhoro, Bilal Ahmed, Kashif Ali kubar, Mehar un Nisa Narejo, Qamar Sarfaraz, Muneer Ahmed Roden, Khalid Hameed, Shabir ahmed, Sami Ullah, sher Jan
This work is licensed under a Creative Commons Attribution 4.0 International License.