Phosphorus Deficiency Stress Tolerance of Six High-Yielding Wheat Genotypes of Pakistan
DOI:
https://doi.org/10.38211/joarps.2023.04.02.132Abstract
Phosphorus (P) is an essential nutrient for wheat production and about half of total P fertilizers are consumed by only wheat in Pakistan. Hence, keeping in mind the ever-increasing input cost of P fertilizers, it becomes highly imperative to identify modern wheat genotypes for their P-use-efficiency. The experiment was consisted two factor completely randomized design (CRD) with three replications. Factor A comprised of two levels of soil applied P i.e.0 Kg ha-1 (Control) and 90 Kg ha-1, while factor B involved six wheat genotypes (Benazir, Imdad -2005, TD-I, Kiran-95, Tj-83, Sindhu). Results showed that as against its deficient condition, adequate P nutrition (90 kg P ha-1) enhanced shoot length (28%), root length (8.9%), fresh shoot weight (97%), fresh root weight (20%), no of leaves per plant (9.3%), leaf area index (130%), dry weight of shoot (83%), dry weight of root (16.5%) of wheat genotypes. Wheat genotype exhibited wide genotypic variation for their P biomass efficiency. Most interestingly, the Phosphorus efficiency ratio (PER) of the wheat genotypes was greater for TJ-83 and Sindhu. The genotype TJ-83 and Sindhu were the most biomass productive genotypes followed by Benazir and Kiran-95 in the uthal region of the Baluchistan. The study concluded that under P deficiency stress, enhanced efficient wheat genotypes determines their growth and biomass production. The genotype Sindhu was categorized as ‘efficient-responsive’ wheat genotype in terms of biomass production, most desirable both for low and high input sustainable agriculture system, Further validation of these results is required under field conditions at Uthal region Balochistan.
Downloads
References
Ahmed, N., and Rashid, M. (2003). Fertilizer use in Pakistan. NFDC. Planning and development division, Islamabad. pp. 94–95.
Babu, S.D., and Ibraham, T. (2006). Sustainable nutrient management in rice cropping system. Agrobios Newsletter. 4(12): 48–49.
Bayu, W., Rethman, N. F. G., Hammes, P. S., and Alemu, G. (2006). Effects of farmyard manure and inorganic fertilizers on sorghum growth, yield, and nitrogen use in a semi-arid area of Ethiopia. Journal of plant nutrition, 29(2), 391-407. DOI: https://doi.org/10.1080/01904160500320962
Blue, E. N., S. C. Mason, and D. H. Sander. (1990). "Influence of planting date, seeding rate, and phosphorus rate on wheat yield."Agronomy Journal 82, no. 4762-768. DOI: https://doi.org/10.2134/agronj1990.00021962008200040022x
Bilal, H. M., Aziz, T., Maqsood, M. A., Farooq, M., & Yan, G. (2018). Categorization of wheat genotypes for phosphorus efficiency. PLoS One, 13(10), e0205471. DOI: https://doi.org/10.1371/journal.pone.0205471
Clark, R. B. (1990). Physiology of cereals for mineral nutrient uptake, use, and efficiency. Crops as enhancers of nutrient use, 131-209. DOI: https://doi.org/10.1016/B978-0-12-077125-7.50009-8
Cooke, G.W. (1982). Fertilizing for maximum yield. 3rd Ed. Collins professional and technical books, Agricultural Research Council, London.
Deng, Y., Chen, K., Teng, W., Zhan, A., Tong, Y., Feng, G., & Chen, X. (2014). Is the inherent potential of maize roots efficient for soil phosphorus acquisition?. PLOS one, 9(3), e90287. DOI: https://doi.org/10.1371/journal.pone.0090287
Gaume, A., Mächler, F., De León, C., Narro, L., & Frossard, E. (2001). Low-P tolerance by maize (Zea mays L.) genotypes: significance of root growth, and organic acids and acid phosphatase root exudation. Plant and soil, 228(2), 253-264. DOI: https://doi.org/10.1023/A:1004824019289
Gill, M. A., & Salim, M. (1994). Growth responses of twelve wheat cultivars and their phosphorus utilization from rock phosphate. Journal of Agronomy and Crop Science, 173(3‐4), 204-209. DOI: https://doi.org/10.1111/j.1439-037X.1994.tb00555.x
Gill, M. A., Mansoor, S., Aziz, T., & Akhtar, M. S. (2002). Differential growth response and phosphorus utilization efficiency of rice genotypes. Pakistan Journal of Agricultural Sciences (Pakistan).
Grant, C., Bittman, S., Montreal, M., Plenchette, C., & Morel, C. (2005). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science, 85(1), 3-14. DOI: https://doi.org/10.4141/P03-182
Grant, C. A., Flaten, D. N., Tomasiewicz, D. J., & Sheppard, S. C. (2001). The importance of early season phosphorus nutrition. Canadian journal of plant science, 81(2), 211-224. DOI: https://doi.org/10.4141/P00-093
Hajabbasi, M. A., & Schumacher, T. E. (1994). Phosphorus effects on root growth and development in two maize genotypes. Plant and soil, 158, 39-46. DOI: https://doi.org/10.1007/BF00007915
Han, S. H., An, J. Y., Hwang, J., Kim, S. B., & Park, B. B. (2016). The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. Forest science and technology, 12(3), 137-143. DOI: https://doi.org/10.1080/21580103.2015.1135827
Havlin, J.L., Tisdale, S.L. Nelson, W.L. and Beaton, J.D. (2016). Soil fertility and fertilizers. An introduction to nutrient management. 7th Ed. Prentice Hall of India.
Kosar, H. S., Gill, M. A., Aziz, T., Akhtar, M. S., & Imran, M. (2002). Solublization of tri-calcium phosphate by different wheat genotypes. Pakistan Journal of Agricultural Sciences (Pakistan).
Kim, H. J., & Li, X. (2016). Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in Lantana. Hort Science, 51(8), 1001-1009. DOI: https://doi.org/10.21273/HORTSCI.51.8.1001
Kubar, M. S., Alshallash, K. S., Asghar, M. A., Feng, M., Raza, A., Wang, C., & Alshamrani, S. M. (2022). Improving Winter Wheat Photosynthesis, Nitrogen Use Efficiency, and Yield by Optimizing Nitrogen Fertilization. Life, 12(10), 1478. DOI: https://doi.org/10.3390/life12101478
Kubar, G. M., Talpur, K. H., Kandhro, M. N., Khashkhali, S., Nizamani, M. M., Kubar, M. S., ... & Kubar, A. A. (2019). 27. Effect of potassium (K+) on growth, yield components and macronutrient accumulation in Wheat crop. Pure and Applied Biology (PAB), 8(1), 248-255.
Kubar, K. A., Chhajro, M. A., Kandhro, M. N., Jamro, G. M., Talpur, K. H., & Talpur, N. (2016). Response of Tomato (Lycopersicon esculentum L.) at Varying Levels of Soil Applied Potassium. Journal of Basic & Applied Sciences, 12.
Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J., & Veneklaas, E. J. (2006). Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of botany, 98(4), 693-713. DOI: https://doi.org/10.1093/aob/mcl114
Liu, D. (2021). Root developmental responses to phosphorus nutrition. Journal of Integrative Plant Biology, 63(6), 1065-1090. DOI: https://doi.org/10.1111/jipb.13090
Liu, Z., Liu, X., Craft, E. J., Yuan, L., Cheng, L., Mi, G., & Chen, F. (2018). Physiological and genetic analysis for maize root characters and yield in response to low phosphorus stress. Breeding science, 68(2), 268-277. DOI: https://doi.org/10.1270/jsbbs.17083
Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104(14), 5925-5930. DOI: https://doi.org/10.1073/pnas.0608361104
Ahmad, N. (2000). Integrated plant nutrition management in Pakistan: status and opportunities. In Proc. Symp. Integrated plant nutrition management, NFDC, Islamabad (pp. 18-39).
Osborne, L. D., & Rengel, Z. (2002). Screening cereals for genotypic variation in efficiency of phosphorus uptake and utilisation. Australian journal of agricultural research, 53(3), 295-303. DOI: https://doi.org/10.1071/AR01080
Rahim, A., Ranjha, A. M., & Waraich, E. A. (2010). Effect of phosphorus application and irrigation scheduling on wheat yield and phosphorus use efficiency. Soil and Environment, 29(1), 15-22.
Timsina, J., & Connor, D. J. (2001). Productivity and management of rice–wheat cropping systems: issues and challenges. Field crops research, 69(2), 93-132. DOI: https://doi.org/10.1016/S0378-4290(00)00143-X
Tiwary, D. K., Hasan, M. A., & Chattopadhyay, P. K. (1998). Studies on the effect of inoculation with Azotobacter and Azospirillum on growth, yield and quality of banana.
Wen, Z., Li, H., Shen, J., & Rengel, Z. (2017). Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil, 416, 377-389. DOI: https://doi.org/10.1007/s11104-017-3214-0
Yamoah, C. F., Bationo, A., Shapiro, B., & Koala, S. (2002). Trend and stability analyses of millet yields treated with fertilizer and crop residues in the Sahel. Field crops research, 75(1), 53-62. DOI: https://doi.org/10.1016/S0378-4290(02)00008-4
Ahmed, H. S., Abd Al Rhman, A. M., & El-Sayed, F. S. (2017). Response of" Washington" Navel Orange Trees to Nitrogen and Zinc Treatments. Middle East J, 6(4), 1447-1458.
Yaseen, M., Gill, M. A., Siddique, M., Ahmad, Z., Mahmood, T., & Rahman, H. (1998). Phosphorus deficiency stress tolerance and phosphorus utilization efficiency in wheat genotypes. In Proceeding of Symposium on Plant Nutrition Management for Sustainable Agric. Growth. Govt. of Pakistan, Planning and Development Division NFDC, Islamabad.
Yaseen, M., Siddiq, S., Manzoor, N., & Sohail, M. (2008). Response of wheat genotypes to deficient and adequate levels of phosphorus. Pak. J. Bot, 40(1), 351-359.
Zhou, T., Wang, L., Sun, X., Wang, X., Chen, Y., Rengel, Z., & Yang, W. (2020). Light intensity influence maize adaptation to low P stress by altering root morphology. Plant and Soil, 447, 183-197. DOI: https://doi.org/10.1007/s11104-019-04259-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kashif Ali Kubar, Zahooor Ahmed , Qambar Baloch, Zia-Ul-hassan Shah, Punhoon Khan Korai, Muhammad Afzal Chhajro, Muhammad Saleem Kubar, Habib Rehman , Qamar Sarafaraz , Ghulam Khalique
This work is licensed under a Creative Commons Attribution 4.0 International License.