Growth and Yield Response of Okra (Abelmoschus esculentus L.) to Various Levels of Biostimulant
DOI:
https://doi.org/10.38211/joarps.2024.05.247Keywords:
Concentrations of biostimulants, Growth, Yield of OkraAbstract
The plant growth and productivity are threatened by poor soil conditions due to excessive use of inorganic fertilizers and abiotic stresses like salinity, drought, and high temperatures. The biostimulants are typically organic chemicals given to plants to increase nutrition efficiency and enhance tolerance against abiotic stresses and plant quality traits. Therefore, the current study was designed in 2023 to explore the effects of biostimulant on the growth, flowering and yield related parameters of okra. In this regard, biostimulant (Quantis Syngenta company) was used as a seed priming agent with different time periods of soaking. Biostimulant was used at 5-, 10-, 20- and 40-ml L-1 and seeds were soaked in each biostimulant solution for 8, 16 and 24 hours. The untreated seeds were treated as control. The experiment was conducted in a Randomized Complete Block Design (RCBD) with three blocks. The results determined that the okra treated with 40 ml L-1 of biostimulant had greater values for seed germination, plant height, branches plant-1, days to flower initiation, pods plant-1, seeds pod-1, pod length, pod diameter, pod weight and pod yield plant-1 as compared to other biostimulant levels and control. In case of soaking time periods, 24 hours resulted maximum seed germination, plant height, branches plant-1, minimum days to flower initiation, pods plant-1, seeds pod-1, pod length, pod diameter, pod weight, and pod yield plant-1. It is concluded from the present study that the seed priming with biostimulant at 40 ml L-1 had significantly greater values for growth and yield related parameters.
Downloads
References
Agudelo-Morales, C.; Tulio, L.; Jina, M.L., Manuel, P. & Enrique C. (2021). Phytohormones and Plant Growth Regulators - A Review. Journal of Science with Technological Applications. 10, 27-65. 10.34294/j.jsta.21.10.66.
Ahmad, J. & Pichtel, S.H. (2008). Plant-Bacteria interactions: Strategies and techniques to promote plant growth. WILEY-VCH Verlag GmbH and Co, KGaA, Weinheim.
Aliferis, K. A., & Jabaji, S. (2015). Metabolomics–A robust bioanalytical approach for the discovery of the modes-of-action of pesticides: A review. Pesticide Biochemistry and physiology, 100(2), 105-117.
Anwar, F., Rashid, U., Mahmood, Z., Iqbal, Z. T. & Sherazi, T. H. (2011). Intervarietal variation in the composition of okra (Hibiscus esculentus L.) seed oil. Pakistan Journal of Botany, 43, 271-280.
Bilal, M. H., & Zubair, M. (2018). Production Technology and Nutritive Value of Okra. Agrihunt.com
Bukhari, U. (2020). Okra cultivation in Pakistan. Gardening with Horticulturist, gardeninig digitalz.com.
Bulgari R., Cocetta G., Trivellini A., Vernieri P. & Ferrante A. (2014). Biostimulants and crop responses: A review. Biological Agriculture & Horticulture, 31:1–17. doi: 10.1080/01448765.2014.964649
Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306.
Chittora, A., Singh, N., & Singh, D. K. (2017). Production technology of okra. Marumegh, 1(1):48-51.
Damalas, C.A., Koutroubas, S.D., Fotiadis, S., Damalas, A., & Koutroubas, D. (2019). Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Journal of Agriculture, 9(9),201-212.
Dantas, T.L.; Alonso Buriti, F.C., & Florentino, E.R. (2021). Okra (Abelmoschus esculentus L.) as a Potential Functional Food Source of Mucilage and Bioactive Compounds with Technological Applications and Health Benefits. Plants 10 (8), 1683. https://doi.org/10.3390/plants10081683.
Durand N, Briand, X. & Meyer, C. (2003) The effect of marine bioactive substances (NPRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Plant Physiology, 119(4), 489-493.
FAOSTAT, 2023. Food and Agriculture Organization of the United Nations. Available online with updates at: http://www.fao.org
FAOSTAT, 2018. Food and Agricultural Organization, Statistics Division, http: //www.fao.org.
Gemede, H.F., Woldegiorgis, A.Z., Retta, N., & Haki, G.D. (2015). Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. American Journal of Food Sciences and Nutrition, 6, 208–215.
González Guzmán, M., Cellini, F., Fotopoulos, V., Balestrini, R. & Arbona, V. (2022). New approaches to improve crop tolerance to biotic and abiotic stresses. Plant Physiology, 174 (1), 13547.
Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). The use of biostimulants for enhancing nutrient uptake. Advances in agronomy, 130, 141-174.
Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of applied phycology, 26, 619-628.
Jardin, P. D. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14.
Khan, A.S., M.A. Khan, M. Fawad and M. Sadiq. (2022). Utilizing weeds as a source of organic fertilizer for improving okra (Abelmoschus esculentus L.) yield attributes. Pakistan Journal of Weed Science Research, 28, 447-456.
Khan, M., Ali, S., Ali, N., Aslam, S., Akbar, R., Ansari, M., Fahad, S., Dutta, R., Danish, S., Hassan, S., Nawaz, T. & Saud, S. & Adnan, M. (2023). Response of okra (Abelmoschus esculentus L.) F5:6 population of for earliness and yield traits. Pakistan Journal of Botany. 55(2), 689-695. 10.30848/PJB2023-2(26)
Kusvuran S. (2012). Influence of drought stress on growth, ion accumulation and antioxidative enzymes in okra genotypes. International Journal of Agriculture and Biology, 14, 401-406.
Laane. (2018). The Effects of Foliar Sprays with Different Silicon Compounds. Plants., 7 (2), 45. DOI: 10.3390/plants7020045.
Mrid, R. B., Benmrid, B., Hafsa, J., Boukcim, H., Sobeh, M., & Yasri, A. (2021). Secondary metabolites as biostimulant and bioprotectant agents: A review. Science of The Total Environment, 777, 146204.
Nardi, S., Pizzeghello, D., Schiavon, M., & Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 73, 18-23.
Nurshanti, D.F., Defrian, D. & Novrian, N. (2021). Growth and yield of okra applied with a bio-Stimulant from golden apple snails extracts and fertilizer on Ultisol. Jurnal Lahan Suboptimal: Journal of Suboptimal Lands, 10(1), 37-45.
Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4, 1-12.
Papenfus, H.B., Kulkarni, M.G., Stirk, W.A., Finnie, J.F. & Van Staden, J. (2013). Effect of a commercial seaweed extract and polyamides on nutrient-deprived (N, P and K) of okra seedlings. Scientia Horticulturae, 151:142-146
Rafiee, H., Naghdi Badi, H. A., Mehrafarin, A., Qaderi, A., Zarinpanjeh, N., Sękara, A., & Zand, E. (2016). Application of plant biostimulants as new approach to improve the biological responses of medicinal plants-A critical review. Journal of Medicinal Plants, 15(59), 6-39.
Sheikh, S. A., Nizamani, S. M., Jamali, A. A., Panhwar, A. A., Channa, M. J., & Mirani, B. N. (2012). Removal of Pesticide Residues from Okra Vegetable through Traditional Processing . Journal of Basic & Applied Sciences, 8, 79–84. https://doi.org/10.6000/1927‐5129.2012.08.01.23
Singh, J., & Takhur, J. K. (2018). Photosynthesis and abiotic stress in plants. Biotic and Abiotic Stress Tolerance in Plants. Singapore: Springer Nature Singapore Private Ltd, 27-46.
Statistix. (2006). Statistics 8.1 user guide, version 1.0. Analytical software, P.O. Box 12185, Tallahassee fl 32317 USA.
Tarantino, A., Lops, F., Disciglio, G., & Lopriore, G. (2018). Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis®’apricot (Prunus armeniaca L.) cultivar in two consecutive years. Scientia Horticulturae, 239, 26-34.
Turan, M., & Köse, C. (2004). Seaweed extracts improve copper uptake of grapevine. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 54(4), 213-220.
Uwiringiyimana, T., Habimana, S., Umuhozariho, M. G., Bigirimana, V. P., Uwamahoro, F., Ndereyimana, A., & Naramabuye, F. X. (2024). Review on Okra (Abelmoschus esculentus (L.) Moench) Production, Nutrition and Health Benefits. Rwanda Journal of Agricultural Sciences, 3(1), 71-87.
Vishnu, K.S. and Rao, S.G.V. (2018). Effect of Growth Stimulants on Morphological and Phenological Parameters of Okra (Abelmoschus esculentus L.) cv. Arka Anamika under Soil test Based Nutrient Management System. International Journal of current microbiology and applied sciences, 7 (08):1658-1665. doi: https://doi.org/10.20546/ijcmas.2018.708.190
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Journal of Frontiers in Plant Science, 7, 249-262.
Yaronskaya, E., Vershilovskaya, I., Poers,Y., Alawady, A.E., Averina, N. & Grimm, B. (2006). Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta, 224,700-709
Zamana S, Sokolov A, Fedorovskiy T, Sokolov S, Kondratyeva T. (2021). Efficacy of application of biostimulants based on non-pathogenic microorganisms when growing okra in Arkansas. Journal of Biomedical Research & Environmental Sciences, 2, 218-222.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ghulam Nabi Khaskheli, Noor-un-Nisa Memon, Maqsood Ali Wagan, Afifa Talpur Afifa Talpur, Muhammad Mithal Lund, Muzamil Farooque Jamali, Ali Raza Jamali
This work is licensed under a Creative Commons Attribution 4.0 International License.