Green Manuring for Increasing Nitrogen use Efficiency and Growth Performance of Wheat
DOI:
https://doi.org/10.38211/joarps.2022.3.1.22Abstract
In the absence of organic matter, the soil is an inert matter and cannot sustain productivity. The soil fertility scenario of Pakistan depicts low organic matter status and low nitrogen contents and has low use efficiency. This study was initiated during 2017-18 to enhance soil nitrogen contents and organic matter through green manuring and augmentation of N use efficiency under agro-ecological condition of Quetta. This experiment consists of five treatments (T1 = Green manuring (GM); T2 = GM +25% recommended N (30 kg N ha-1); T3 = GM+50% N (60 kg N ha-1); T4 = GM+75% N (90 kg N ha-1); T5 = GM+100% N (120 kg N ha-1) and three replications based on randomized complete block design (RCBD). The results revealed that all the study parameters except plant height and chlorophyll contents were improved when 75 and 100% recommended N were applied to wheat crops after green manuring. Green manuring helped in enhancing soil N level when 75% recommended N was applied because both 75 and 100% N expressed statistically at par differences for wheat traits and yield. In addition, green manuring increased NUE by 68.9, 147.0, 126.2, and 100.8% across different N percentages (25, 50, 75 and 100%). However, without the addition of nitrogen fertilizer, only green manuring could not meet the N requirement of wheat crops. Consequently, it is inferred that green manuring helped in enhancing soil organic matter and total nitrogen when N fertilizer was applied to the wheat crop. It is suggested that various green manure crops can be evaluated to augment SOM and TN for the succeeding crop.
Downloads
References
Bai Y, Yan, Y., Zuo, W., Gu, C., Xue, W., Mei, L., Shan, Y., & Feng, K. (2017). Coastal mudflat saline soil amendment by dairy manure and green manuring. Inter J Agron. 1-9. DOI: https://doi.org/10.1155/2017/4635964
Bedada, W., Karltun, E., Lemenih, M., & Tolera, M. (2014). Long-term addition of compost and NP fertilizer increases crop yield and improves soil quality in experiments on smallholder farms. Agric. Ecosyst. Environ. 195: 193-201. DOI: https://doi.org/10.1016/j.agee.2014.06.017
Bedini, S., Avio, L., Sbrana, C., Turrini, A., Migliorini, P., Vazzana, C., Giovannetti, M. (2013). Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Boil. Fertil. Soils, 49:781-790. DOI: https://doi.org/10.1007/s00374-012-0770-6
Belachew, T., & Abera, Y. (2011). Effect of green manuring in combination with nitrogen on soil fertility and yield of bread wheat (Triticum aestivum) under double cropping system of Sinanadinsho, Southeast Ethiopia. JBES 1: 1-11.
Benbi, D.K., Toor, A.S., & Kumar, S. (2012). Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant Soil, 360:145-162. DOI: https://doi.org/10.1007/s11104-012-1226-3
Black, C.A. (1993). Soil fertility evaluation and control. Lewis publishers, Boca Raton, Florida, USA.
Bohlool, B.B., Ladha, J.K., Grrrity, D.P. & George, T. (2004). Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141: 1-11. DOI: https://doi.org/10.1007/978-94-017-0910-1_1
Bouyoucos, G.J. (1962). Hydrometer method improved for making particle-size analysis of soils. Agron. J., 53:464-465. DOI: https://doi.org/10.2134/agronj1962.00021962005400050028x
Cao, Y., Tian, Y., Yin, B., & Zhu, Z. (2013). Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Research, 147: 23-31. DOI 10.1016/j.fcr.2013.03.015. DOI: https://doi.org/10.1016/j.fcr.2013.03.015
Carlsson, G., & Huss-Danell, K. (2003). Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253: 353- 372. DOI: https://doi.org/10.1023/A:1024847017371
Cottenie, A. (1980). Soil and Plant testing as a basis of fertilizer recommendations. FAO soil Bulletin 38/2. Differences de techniques. Fruits, 32:151-166.
Dawe, D., Dobermann, A., Ladha, J.R., Yadav, L., Bao, Gupta, R., Lal, P., Panaullah, G., Sariam, O. & Singh, Y. et al. (2003). Do organic amendments improve yield trends and profitability in intensive rice systems? Field Crop. Res. 83:191-213. DOI: https://doi.org/10.1016/S0378-4290(03)00074-1
Deng, F., Wang, L., Ren, W.J., & Mei, X.F. (2014). Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crops Research, 169, 30–38. DOI 10.1016/j.fcr.2014.08.015. DOI: https://doi.org/10.1016/j.fcr.2014.08.015
Dikemann, K.H., De Datta, S.K., Ottow, J.C.G. (1993). Nitrogen uptake and recovery from urea and green manure in lowland rice measured by 15N and non-isotope techniques. Plant Soil 148: 91-99. DOI: https://doi.org/10.1007/BF02185388
Ghuman, B.S., Sur, H.S. (2006). Effect of manuring on soil properties and yield of rainfed wheat. J Indian Soc Soil Sci 54: 6-11.
Hasan, Z.A., Khan, A., Jha, A.K., Razzaq, A., Sajjad, M.R., & Muhammad, G. (2014). Green manuring for improved wheat yield through moisture conservation in rainfed areas of Pakistan. J Agri Food Appl Sci 2(6): 171-17
Jat, M.L., Bijay-Singh, & Gerard, B. (2014). Nutrient Management and Use Efficiency in Wheat Systems of South Asia. Advances in Agronomy, 171-259. doi:10.1016/b978-0-12-800137-0.00005-4 DOI: https://doi.org/10.1016/B978-0-12-800137-0.00005-4
Jones, J.B. (1991). Kjeldahl method for nitrogen determination. Micro-Macro Publishing Inc., Athens, GA, USA.
Knudsen, D., Peterson, G.A., & G.A. Pratt, G.A. (1982). Lithium, sodium and potassium. P. 225-245. In: A.L page (Ed.), Methods of Soil Analysis, Part 2: Chemical and microbiological properties. Am. Soc. Agron, Madison WI, USA. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Kumar, N., Mina, B.L., & Chandra, S. (2011). In-situ green manuring for enhancing productivity, profitability and sustainability of upland rice. Nutr Cycl Agroecosys 90: 369–377. DOI: https://doi.org/10.1007/s10705-011-9438-0
Kumar, S., Patra, A.K., Singh, D., Purakayastha, T.J. (2014). Long-Term Chemical Fertilization Along with Farmyard Manure Enhances Resistance and Resilience of Soil Microbial Activity against Heat Stress. J. Agron. Crop Sci., 200: 156–162. DOI: https://doi.org/10.1111/jac.12050
Ladha, J.K., Dawe, D., Pathak, H., Padre, A.T., Yadav, R.L., Yadvinder-Singh, Bijay-Singh, Singh Y., Singh, P., Kundu, A.L., Sakal, R., Ram, N., Regmi, A.P., Gami, S.K., Gupa, R.K., & Hobbs, P.R. (2003). How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crop Res. 81: 159-181. DOI: https://doi.org/10.1016/S0378-4290(02)00219-8
Liu, D., Ishikawa, H., Nishida, V., Tsuchiya, K., Takahashi, T. et al. (2015). Effect of paddy-upland rotation on methanogenic archaeal community structure in paddy field soil. Microbial Ecology, 69(1):160-168. DOI 10.1007/ s00248-014-0477-3. DOI: https://doi.org/10.1007/s00248-014-0477-3
Luo, Y., A. Iqbal, L. He, Q. Zhao, S. Wei, et al. (2020). Long-term no-tillage and straw retention management enhances soil bacterial community diversity and soil properties in Southern China. Agronomy, 10(9), 1233. DOI 10.3390/agronomy10091233. DOI: https://doi.org/10.3390/agronomy10091233
Ma, F., Ma, H.L., Qiu, H., & Yang, H.Y. (2015). Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N2O emission in subtropical forest soils. Yingyong Shengtai Xuebao, 26(2):379-387.
McDaniel, M.D., Tiemann, L.K., & Grandy, A.S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24: 560-570. DOI: https://doi.org/10.1890/13-0616.1
McLean, E.O. (1982). Soil pH and lime requirement In: Page, A.L. (Ed.), Methods of soil analysis, Part 2: chemical and microbiological properties .AM. Soc. Agron., Madison, WI, USA., P. 199-224. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c12
Mohanty, S., Nayak, A., Kumar, A., Tripathi, R., Shahid, M., Bhattacharyya, P., Raja, R., Panda, B., & Shahid, D.M. (2013). Carbon and nitrogen mineralization kinetics in soil of rice–rice system under long term application of chemical fertilizers and farmyard manure. Eur. J. Soil Boil., 58:113-121. DOI: https://doi.org/10.1016/j.ejsobi.2013.07.004
Palled, Y.B., Desai, B.K., & Prabhakar, A.S. (2000). Integrated nutrient in alley cropped maize (Zea mays)-groundnut (Arachis hypogaea) system with subabul (Leucaena leucocephala). Indian J. Agron. 45: 520-555. DOI: https://doi.org/10.59797/ija.v45i3.3408
Pathak, H., Aggarwal, P.K., Roetter, R., Kalra, N.S., Bandyopadhaya, K., Prasad, S., & van Keulen, H. (2003). Modelling the quantitative evaluation of soil nutrient supply, nutrient use efficiency, and fertilizer requirements of wheat in India. Nutr. Cycl. Agroecosyst. 65:105-113. DOI: https://doi.org/10.1023/A:1022177231332
Patra, D.D., Anwar, A., & Chand, S. (2000). Integrated nutrient management and waste recycling for restoring soil fertility and productivity in Japanese mint and mustard sequence in Uttar Pradesh. Indin Agr Ecosys Environ 80: 267-275. DOI: https://doi.org/10.1016/S0167-8809(00)00151-1
Prakash, O.M., & Bhushan, L.S. (2003). Effect of fertilizer substitution through white lead tree (Leucaena leucocephala) green biomass on growth, yield and economics of wheat (Triticum aestivum) crop in degraded lands. Indian J. Agric. Sci. 73: 311-314.
Ramos, M.G., Villatoro, M.A.A., Urquiaga, S., Alves, B.J., & Boddey, R.M. (2001). Quantification of the contribution of biological nitrogen fixation to tropical green manure crops and the residual benefit to a subsequent maize crop using 15N-isotope techniques. J Biotechnol 91(2-3): 105-115. DOI: https://doi.org/10.1016/S0168-1656(01)00335-2
Salahin, N., Alam, M.K., Islam, M.M., Naher, L., & Majid, N.M. (2013). Effects of green manure crops and tillage practice on maize and rice yields and soil properties. Aust J Crop Sci 7: 1901.
Shah, Z., Ahmed, S.R., Rahman, H., & Shah, M.Z. (2011). Sustaining rice-wheat system through management of legumes. II. Effect of green manure legumes and N fertilizer on wheat yield. Pak. J. Bot. 43: 2093-2097.
Singh, S., Singh, R.J., Kumar, K., Singh, B., & Shukla, L. (2013). Biofertilizers and Green manuring for sustainable agriculture, 1st edn. New India Publishing Agency, New Delhi, 129- 150.
Sonneveld, C., & Van Dijk, P.A. (1982). The effectiveness of some washing procedures on the removal of contaminates from plant tissues of glass house crops. Communications in Soil Science and Plant analysis 13: 487-496. DOI: https://doi.org/10.1080/00103628209367288
Sultan pour, P.N., Schwab, A.P. (Eds.). (1977). A new soil test for simultaneous extraction of macro-micro nutrients in alkaline soils. Commun. soil sci., plant Anal., 8:195-207. DOI: https://doi.org/10.1080/00103627709366714
Sultani, M.I., Shaukat, M., Mahmood, I.A., & Joyia, M.F. 2004. Wheat growth and yield response to various green manure legumes and different P levels in Pothowar region. Pak. J. Agri. Sci., 41(3-4):102-108.
Thorup-Kristensen, K., Dresbøll, D.B., & Kristensen, H.L. (2012). Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. Eur. J. Agron., 37: 66-82. DOI: https://doi.org/10.1016/j.eja.2011.11.004
Tian, S., Ning, T., Wang, Y., Liu, Z., Li, G., Li, Z., & Lal, R. (2016). Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res. 163: 207-213. DOI: https://doi.org/10.1016/j.still.2016.06.005
Walkley, A. (1947). A critical examination of rapid method for exterminating organic carbon in soil: Effect of variations in digestion conditions and of organic soil constituents. Soil Sci 63:251-263. DOI: https://doi.org/10.1097/00010694-194704000-00001
Wolf, B. (1982). A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis 13: 1035-1059. DOI: https://doi.org/10.1080/00103628209367332
Yadav, R.I. (2001). On farm experiments on integrated nutrient management in rice-wheat cropping systems. Exp Agr 7: 99-113. DOI: https://doi.org/10.1017/S0014479701001077
Yadav, R.L., Singh, V.K., Dwivedi, B.S., & Shukla, A.K. (2003). Wheat productivity and N use-efficiency as influenced by inclusion of cowpea as a grain legume in a rice-wheat system. J Agri Sci 141: 213- 220. DOI: https://doi.org/10.1017/S0021859603003563
Yadav, R., Dwivedi, B., Prasad, K., Tomar, O., Shurpali, N., Pandey, P., & Shurpali, N. (2000). Yield trends, and changes in soil organic-C and available NPK in a long-term rice–wheat system under integrated use of manures and fertilisers. Field Crop. Res., 68:219-246. DOI: https://doi.org/10.1016/S0378-4290(00)00126-X
Yao, Z., Zhang, D., Yao, P., Zhao, N., Liu, N., Zhai, B., Zhang, S., & Li, Y. (2017). Science of the Total Environment Coupling life-cycle assessment and the RothC model to estimate the carbon footprint of green manure-based wheat production in China. Sci. Total Environ. 607-608: 433-442. DOI: https://doi.org/10.1016/j.scitotenv.2017.07.028
Zhang, Y., Chen, X.P., Ma, W.Q., & Cui, Z.L. (2017). Elucidating variations in nitrogen requirement according to yield, variety and cropping system for Chinese rice production. Pedosphere, 27(2):358–363 DOI: https://doi.org/10.1016/S1002-0160(17)60323-0
Zhou, C.H., Zhao, Z.K., Pan, X.H., Huang, S., Tan, X.M. et al. (2016). Integration of growing milk vetch in winter and reducing nitrogen fertilizer application can improve rice yield in double-rice cropping system. Rice Science, 23(3): 132–143 DOI: https://doi.org/10.1016/j.rsci.2015.11.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ghulam Muhammad, Shahinshah Khan, Mustajab A Khan, Javed Anjum, Nazeer Ahmed Alizai, Kamran Anjum, Hidayatullah Kakar, Tariq Ziad
This work is licensed under a Creative Commons Attribution 4.0 International License.