Co-inoculation of Bradyrhizobium and Phosphate Solubilizing Microbes on Growth Promotion of Groundnut Under Rain-fed Conditions

Authors

  • Fraza Ijaz 1Soil Bacteriology Section, Agriculture Biotechnology Research Institute, AARI Faisalabad, Pakistan
  • Muhammad Furqan Ijaz Soil and Water Testing Laboratory
  • Hina Javed Soil Bacteriology Section, Agriculture Biotechnology Research Institute, AARI Faisalabad, Pakistan
  • Hafiz Abubakar Amin Soil and Water Testing Laboratory, Faisalabad, Pakistan
  • Hafsa Zafar Soil and Water Testing Laboratory, Faisalabad, Pakistan
  • Ali Hamza Government College University, Faisalabad, Pakistan
  • Muhammad Usman Saleem Soil and Water Testing Laboratory, Toba Tek Singh
  • Fakhar Mujeeb Soil Bacteriology Section, Agriculture Biotechnology Research Institute, AARI Faisalabad, Pakistan
  • Shabana Ehsan Soil Bacteriology Section, Agriculture Biotechnology Research Institute, AARI Faisalabad, Pakistan
  • Alamgir Alvi Soil and Water Testing Laboratory, Jehlum-49600, Punjab, Pakistan

DOI:

https://doi.org/10.38211/joarps.2022.3.2.42

Keywords:

Groundnut, biochemical process,, P-fixation, root-microbe interaction, soil bacteriology

Abstract

Plant growth-promoting bacteria (PGPB) can improve plant development and protect plants from diseases and abiotic stresses. Plant-bacterial interactions in the rhizosphere are important factors in soil fertility and plant health. Symbiotic nitrogen-fixing bacteria include the cyanobacteria of the genera Rhizobium, Bradyrhizobium, Azorhizobium, Allorhizobium, Sinorhizobium and Mesorhizobium. Therefore, to investigate the effect of co-inoculation of Bradyrhizobium and phosphate solubilizing microbes (PSM) on groundnut crop under field conditions using normal soil, divided into eight different study groups i.e., control (T1), Bradyrhizobium isolate -1 (T2), Bradyrhizobium isolate -2 (T3), Bradyrhizobium isolate -3(T4), Phosphate solubilizing microbe (PSM) (T5), T2 + PSM (T6), T3 + PSM (T7), T4 + PSM (T8). The results showed maximum groundnut pod yield (2428 kg ha-1) was obtained in treatment where inoculation with bacterial isolate-2 applied as compared to control. In case of plant height and shoot dry biomass, maximum response was observed in T7 (59.4 cm, 4733 kg ha-1) as compared to control i.e., 40.5 cm, 3156.7 kg ha-1 respectively. It was concluded that this technique might be useful and applicable to cut down the high input cost of phosphate fertilizers for the production of other crops also

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdel-Wahab, A.F., Mekhemar, G.A., Badawi, F.S., Shehata, H.S., 2008. Enhancement of nitrogen fixation, growth, and productivity of bradyrhizobium-lupin symbiosis via co-inoculation with rhizobacteria in different soil types. Journal of Agricultural Chemistry and Biotechnology, 33(1), 469-84. DOI: https://doi.org/10.21608/jacb.2008.200691

Adesemoye, A.O., Torbert, H.A., Kloepper, J.W., 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial ecology, 58(4),921-9. DOI: https://doi.org/10.1007/s00248-009-9531-y

Alcantara, R.M., Xavier, G.R., Rumjanek, N.G., Rocha, M.D., Carvalho, J.D., 2014. Symbiotic efficiency of parents of Brazilian cowpea cultivars. Agricultural Science Magazine, 45:1-9. DOI: https://doi.org/10.1590/S1806-66902014000100001

Aliyu, U. S., Ozdeser, H., Çavuşoğlu, B., & Usman, M. A. 2021. Food Security Sustainability: A Synthesis of the Current Concepts and Empirical Approaches for Meeting SDGs. Sustainability, 13(21), 11728. DOI: https://doi.org/10.3390/su132111728

Alori, E.T., Glick, B.R., Babalola, O.O., 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in microbiology, 8:971. DOI: https://doi.org/10.3389/fmicb.2017.00971

Alquéres, S., Meneses, C., Rouws, L., Rothballer, M., Baldani, I., Schmid, M., Hartmann, A., 2013. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Molecular plant-microbe interactions 26(8), 937-45. DOI: https://doi.org/10.1094/MPMI-12-12-0286-R

Alves, B.J., Boddey, R.M., Urquiaga, S., 2003. The success of BNF in soybean in Brazil. Plant and soil 252(1),1-9. DOI: https://doi.org/10.1023/A:1024191913296

Antoun, H., Beauchamp, C.J., Goussard, N., Chabot, R., Lalande, R., 1998. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). In Molecular microbial ecology of the soil (pp. 57-67). Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-017-2321-3_5

Bai, Y., Souleimanov, A., Smith, D.L., 2002. An inducible activator produced by a Serratia proteamaculans strain and its soybean growth‐promoting activity under greenhouse conditions. Journal of experimental botany, 53(373),1495-502. DOI: https://doi.org/10.1093/jxb/53.373.1495

Biswas, S. S., Biswas, D. R., Ghosh, A., Sarkar, A., Das, A., & Roy, T. (2022). Phosphate solubilizing bacteria inoculated low-grade rock phosphate can supplement P fertilizer to grow wheat in sub-tropical inceptisol. Rhizosphere, 23, 100556. DOI: https://doi.org/10.1016/j.rhisph.2022.100556

Boogerd, F.C., van Rossum, D., 1997. Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS microbiology reviews 21(1), 5-27. DOI: https://doi.org/10.1111/j.1574-6976.1997.tb00342.x

Boyacι-Gunduz, C. P., Ibrahim, S. A., Wei, O. C., & Galanakis, C. M. 2021. Transformation of the food sector: Security and resilience during the COVID-19 pandemic. Foods, 10(3), 497. DOI: https://doi.org/10.3390/foods10030497

Chaintreuil, C., Giraud, E., Prin, Y., Lorquin, J., Bâ, A., Gillis, M., De Lajudie, P., Dreyfus, B., 2000. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Applied and environmental microbiology, 66(12),5437-47. DOI: https://doi.org/10.1128/AEM.66.12.5437-5447.2000

Danhorn, T., Fuqua, C., 2007. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol 61:401-22. DOI: https://doi.org/10.1146/annurev.micro.61.080706.093316

de Melo, E.B., de Lima, L.M., Fernandes Junior, P.I., Aidar, S.D., Freire, M.A., Freire, R.M., dos Santos, R.C., 2016. Nodulation, gas exchanges and production of peanut cultivated with Bradyrhizobium in soils with different textures. Embrapa Semiárido-Artigo em periódico indexado (ALICE). DOI: https://doi.org/10.14295/cs.v7i2.1449

Egamberdieva, D., Wirth, S.J., Alqarawi, A.A., Abd_Allah, E.F., Hashem, A., 2017. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in microbiology, 8:2104. DOI: https://doi.org/10.3389/fmicb.2017.02104

El-Esawi, M.A., Alaraidh, I.A., Alsahli, A.A., Alamri, S.A., Ali, H.M., Alayafi, A.A., 2018. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiology and Biochemistry 132,375-84. DOI: https://doi.org/10.1016/j.plaphy.2018.09.026

Fazeli-Nasab, B., Piri, R., & Rahmani, A. F. 2022. Assessment of the role of rhizosphere in soil and its relationship with microorganisms and element absorption. Plant Protection: From Chemicals to Biologicals, 225. DOI: https://doi.org/10.1515/9783110771558-010

Franche, C., Lindström, K., Elmerich, C., 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and soil 321(1), 35-59. DOI: https://doi.org/10.1007/s11104-008-9833-8

Gamalero, E., Glick, B.R., 2011. Mechanisms used by plant growth-promoting bacteria. In bacteria in agrobiology: plant nutrient management (pp. 17-46). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-21061-7_2

Glickmann, E., Gardan, L., Jacquet, S., Hussain, S., Elasri, M., Petit, A., Dessaux, Y., 1998. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Molecular Plant-Microbe Interactions, 11(2),156-62. DOI: https://doi.org/10.1094/MPMI.1998.11.2.156

Gray, E.J., Smith, D.L., 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signalling processes. Soil biology and biochemistry 37(3), 395-412. DOI: https://doi.org/10.1016/j.soilbio.2004.08.030

Ijaz, F., Riaz, U., Iqbal, S., Zaman, Q., Ijaz, M.F., Javed, H., Qureshi, M.A., Mazhar, Z., Khan, A.H., Mehmood, H., Ahmad, I., 2019. Potential of rhizobium and PGPR to enhance growth and fodder yield of berseem (Trifolium alexandrinum L.) in the presence and absence of tryptamine. Pakistan Journal of Agricultural Research, 32(2), 398-406. DOI: https://doi.org/10.17582/journal.pjar/2019/32.2.398.406

Kafeel, U., Jahan, U., & Khan, F. A. (2023). Role of mineral nutrients in biological nitrogen fixation. In Sustainable Plant Nutrition (pp. 87-106). Academic Press. DOI: https://doi.org/10.1016/B978-0-443-18675-2.00004-3

Khan, M.S., Zaidi, A., Wani, P.A., 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agronomy for sustainable development, 27(1), 29-43. DOI: https://doi.org/10.1051/agro:2006011

Knezevic, M., Buntic, A., Delic, D., & Stajković-Srbinović, O. (2022). Root Nodule Bacteria-Rhizobia: Exploring the Beneficial Effects on Non-legume Plant Growth. In Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes (pp. 129-168). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-19-4906-7_7

Korir, H., Mungai, N.W., Thuita, M., Hamba, Y., Masso, C., 2017. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in plant science 8:141. DOI: https://doi.org/10.3389/fpls.2017.00141

Li, Y., Li, Q., Guan, G., Chen, S., 2020. Phosphate solubilizing bacteria stimulate wheat rhizosphere and endosphere biological nitrogen fixation by improving phosphorus content. Peer J, 8: e9062. DOI: https://doi.org/10.7717/peerj.9062

Liu, Q., Sun, X., Wu, W., Liu, Z., Fang, G., & Yang, P. 2022. Agroecosystem services: A review of concepts, indicators, assessment methods and future research perspectives. Ecological Indicators, 142, 109218. DOI: https://doi.org/10.1016/j.ecolind.2022.109218

Malik, K.A., Bilal, R., Mehnaz, S., Rasul, G., Mirza, M.S., Ali, S., 1997. Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with Kallar grass and rice. In Opportunities for biological nitrogen fixation in rice and other non-legumes (pp. 37-44). Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-011-5744-5_5

Marinho, R.D., Ferreira, L.D., Silva, A.F., Martins, L.M., Nóbrega, R.S., Fernandes-Júnior, P.I., 2017. Symbiotic and agronomic efficiency of new cowpea rhizobia from Brazilian Semi-Arid. Bragantia, 76:273-81. DOI: https://doi.org/10.1590/1678-4499.003

Marinho, R.D., Nóbrega, R.S., Zilli, J.É., Xavier, G.R., Santos, C.A., Aidar, S.D., Martins, L.M., Fernandes, P.I. 2014. Field performance of new cowpea cultivars inoculated with efficient nitrogen-fixing rhizobia strains in the Brazilian Semiarid. Pesquisa Agropecuária Brasileira; 49:395-402. DOI: https://doi.org/10.1590/S0100-204X2014000500009

Meneses, C.H., Rouws, L.F., Simões-Araújo, J.L., Vidal, M.S., Baldani, J.I., 2011. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Molecular plant-microbe interactions 24(12), 1448-58. DOI: https://doi.org/10.1094/MPMI-05-11-0127

Minamisawa, K., Seki, T., Onodera, S.H., Kubota, M., Asami, T., 1992. Genetic relatedness of Bradyrhizobium japonicum field isolates as revealed by repeated sequences and various other characteristics. Applied and Environmental Microbiology 58(9), 2832-9. DOI: https://doi.org/10.1128/aem.58.9.2832-2839.1992

Mitter, B., Brader, G., Afzal, M., Compant, S., Naveed, M., Trognitz, F., Sessitsch, A., 2013. Advances in elucidating beneficial interactions between plants, soil, and bacteria. Advances in agronomy,121:381-445. DOI: https://doi.org/10.1016/B978-0-12-407685-3.00007-4

Ngumbi, E., Kloepper, J., 2016. Bacterial-mediated drought tolerance: current and future prospects. Applied Soil Ecology 105:109-25. DOI: https://doi.org/10.1016/j.apsoil.2016.04.009

Piromyou, P., Nguyen, H.P., Songwattana, P., Boonchuen, P., Teamtisong, K., Tittabutr, P., Boonkerd, N., Alisha Tantasawat, P., Göttfert, M., Okazaki, S., Teaumroong, N., 2021. The Bradyrhizobium diazoefficiens type III effector NopE modulates the regulation of plant hormones towards nodulation in Vigna radiata. Scientific Reports 11(1),1-2. DOI: https://doi.org/10.1038/s41598-021-95925-4

Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., Paré, P.W., 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant physiology. Mar 1;134(3),1017-26. DOI: https://doi.org/10.1104/pp.103.026583

Sharma, M., Mishra, V., Rau, N., Sharma, R.S., 2016. Increased iron‐stress resilience of maize through inoculation of siderophore‐producing Arthrobacter globiformis from mine. Journal of basic microbiology.56(7):719-35. DOI: https://doi.org/10.1002/jobm.201500450

Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Cornejo, P., Sipahutar, M. K., & Pugazhendhi, A. (2022). Amelioration of aluminum phytotoxicity in Solanum lycopersicum by co-inoculation of plant growth promoting Kosakonia radicincitans strain CABV2 and Streptomyces corchorusii strain CASL5. Science of The Total Environment, 832, 154935. DOI: https://doi.org/10.1016/j.scitotenv.2022.154935

Souza, R.D., Ambrosini, A., Passaglia, L.M., 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and molecular biology 38, 401-19. DOI: https://doi.org/10.1590/S1415-475738420150053

Stagnari, F., Maggio, A., Galieni, A., Pisante, M., 2017. Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture 4(1):1-3. DOI: https://doi.org/10.1186/s40538-016-0085-1

Tripathi, B. P., Timsina, J., Vista, S. P., Gaihre, Y. K., & Sapkota, B. R. 2022. Improving soil health and soil security for food and nutrition security in Nepal. Agriculture, Natural Resources and Food Security, 121-143. DOI: https://doi.org/10.1007/978-3-031-09555-9_8

Verma, J.P., Yadav, J., Tiwari, K.N., Lavakush, S., Singh, V., 2010. Impact of plant growth promoting rhizobacteria on crop production. International journal of agricultural research 5(11), 954-83. DOI: https://doi.org/10.3923/ijar.2010.954.983

Vessey, J.K., Buss, T.J., 2002. Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: controlled-environment studies. Canadian Journal of Plant Science 82(2), 282-90. DOI: https://doi.org/10.4141/P01-047

Vlassak, K.M., Vanderleyden, J., Graham, P.H., 1997. Factors influencing nodule occupancy by inoculant rhizobia. Critical Reviews in Plant Sciences,16(2), 163-229. DOI: https://doi.org/10.1080/07352689709701948

Zahir, Z.A., Arshad, M., 2004. Perspectives In Agriculture. Advances in agronomy 81:97. DOI: https://doi.org/10.1016/S0065-2113(03)81003-9

Downloads

Published

2023-01-01

How to Cite

Ijaz, F., Ijaz, M. F., Javed, H., Amin, H. A., Zafar, H., Hamza, A., … Alvi, A. (2023). Co-inoculation of Bradyrhizobium and Phosphate Solubilizing Microbes on Growth Promotion of Groundnut Under Rain-fed Conditions. Journal of Applied Research in Plant Sciences , 4(01), 348–355. https://doi.org/10.38211/joarps.2022.3.2.42

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.