Genome-wide Analysis of Plant Specific YABBY Transcription Factor Gene Family in Watermelon (Citrullus lanatus) and Arabidopsis

Authors

  • Mehr-ul- Nisa Department of Horticulture, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Shafiq Department of Horticulture, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Mujahid Manzoor Department of Entomology, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Bilal Department of Agronomy, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Tariq Manzoor Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • Malik Muazzam Anees Department of Horticulture, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Rizwan Department of Food Science and Technology, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Zeeshan Haider Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • Adnan Sami Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • Muhammad Saleem Haider Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan

DOI:

https://doi.org/10.38211/joarps.2024.05.179

Keywords:

Watermelon, Gene family, Genomic analysis, Specific plant transcription factors, YABBY

Abstract

The YABBY gene family is a specific transcription factor for plants and a DNA binding domain that carries out several different functions, such as regulating the length of blooming plant styles and the polarity of lateral organ development. The YABBY gene family members were identified in the watermelon (Citrullus lanatus subsp. vulgaris var. 97103 V1) genome using a set of bioinformatics techniques. Protein motifs, protein architectures, protein sequences, miRNA targets, and tissue-specific expression patterns were all examined. All chromosomes had an uneven distribution of about eight putative YABBY genes. Inner No Outer INO, CRC (Crabs Claw), YAB2, YAB3/AFO, and YAB5 were the five subgroups that the YABBY proteins in watermelon fall within, in accordance with the accepted Arabidopsis categorization which is based on International Standards of Nomenclature. Segmental duplication was more frequent than tandem duplication, and it was predominantly responsible for the growth of the YABBY gene family in watermelon. The results of tissue-specific expression profiling of ClYAABY genes showed that the vast majority of these genes were substantially expressed in roots and seedlings. In this study, cis-regulatory element (CRE) analyses were employed to identify elements in seedlings and roots that are highly responsive to light,wound, drought, auxin, stress, salicylic acid, and abscisic acid (ABA). The findings reveal specific CREs within the promoter regions of genes associated with these responses. Five groups or sub-families have also been identified by comparing the YABBY genes in watermelon and Arabidopsis, however the CRC and YAB2 groups do not share gene pairing among the other groups. This research contributes to a deeper understanding of plant adaptability and stress response mechanisms, with implications for agriculture and plant science.

Downloads

Download data is not yet available.

References

Alvarez, J., & Smyth, D. R. (1999). CRABS CLAW and SPATULA, two Arabidopsis genes that controcarpel development in parallel with AGAMOUS. Development, 126(11), 2377-2386. DOI: https://doi.org/10.1242/dev.126.11.2377

Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The MEME suite. Nucleic acids research, 43(W1), W39-W49. DOI: https://doi.org/10.1093/nar/gkv416

Bondarenko, V. S., & Gelfand, M. S. (2016). Evolution of the Exon-Intron Structure in Ciliate Genomes. PLoS One, 11(9), e0161476. 10.1371/journal.pone.0161476 DOI: https://doi.org/10.1371/journal.pone.0161476

Bowman, J. L. (2000). The YABBY gene family and abaxial cell fate. Current opinion in plant biology, 3(1), 17-22. DOI: https://doi.org/10.1016/S1369-5266(99)00035-7

Bowman, J. L., & Smyth, D. R. (1999). CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 126(11), 2387-2396. DOI: https://doi.org/10.1242/dev.126.11.2387

Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. DOI: https://doi.org/10.1105/tpc.1.1.37

Bulow, L., & Hehl, R. (2016). Bioinformatic Identification of Conserved Cis-Sequences in Coregulated Genes. [Research Support, Non-U.S. Gov't]. Methods Mol Biol, 1482, 233-245. DOI: https://doi.org/10.1007/978-1-4939-6396-6_15

Buttar, Z. A., Yang, Y., Sharif, R., Nan Wu, S., Xie, Y., & Wang, C. (2020). Genome wide identification, characterization, and expression analysis of YABBY-gene family in wheat (Triticum aestivum L.). Agronomy, 10(8), 1189. DOI: https://doi.org/10.3390/agronomy10081189

Cai, X., Zhang, Y., Zhang, C., Zhang, T., Hu, T., Ye, J., Ye, Z. (2013). Genome-wide analysis of plant-specific Dof transcription factor family in tomato. J Integr Plant Biol, 55(6), 552-566. DOI: https://doi.org/10.1111/jipb.12043

Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., & May, G. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC plant biology, 4(1), 1-21. DOI: https://doi.org/10.1186/1471-2229-4-10

Carbone, F., Bruno, L., Perrotta, G., Bitonti, M. B., Muzzalupo, I., & Chiappetta, A. (2019). Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea L. transcriptome. PLoS One, 14(8), e0221460.PLoS One, 14(8), e0221460. DOI: https://doi.org/10.1371/journal.pone.0221460

Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular plant, 13(8), 1194-1202. DOI: https://doi.org/10.1016/j.molp.2020.06.009

Chen, Y.-Y., Hsiao, Y.-Y., Chang, S.-B., Zhang, D., Lan, S.-R., Liu, Z.-J., & Tsai, W.-C. (2020). Genome-wide identification of YABBY genes in Orchidaceae and their expression patterns in Phalaenopsis orchid. Genes, 11(9), 955. DOI: https://doi.org/10.3390/genes11090955

Dong, C., Hu, H., & Xie, J. (2016). Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Genome, 59(12), 1085-1100. DOI: https://doi.org/10.1139/gen-2016-0081

Eckardt, N. A. (2010). YABBY genes and the development and origin of seed plant leaves: American Society of Plant Biologists. DOI: https://doi.org/10.1105/tpc.110.220710

Finet, C., Floyd, S. K., Conway, S. J., Zhong, B., Scutt, C. P., & Bowman, J. L. (2016). Evolution of the YABBY gene family in seed plants. Evolution & development, 18(2), 116-126. DOI: https://doi.org/10.1111/ede.12173

Floyd, S. K., & Bowman, J. L. (2007). The ancestral developmental tool kit of land plants. International journal of plant sciences, 168(1), 1-35. DOI: https://doi.org/10.1086/509079

Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server The proteomics protocols handbook (pp. 571-607): Springer. DOI: https://doi.org/10.1385/1-59259-890-0:571

Golz, J. F., Roccaro, M., Kuzoff, R., & Hudson, A. (2004). GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. DOI: https://doi.org/10.1242/dev.01221

Gu, X., Zou, Y., Su, Z., Huang, W., Zhou, Z., Arendsee, Z., & Zeng, Y. (2013). An update of DIVERGE software for functional divergence analysis of protein family. Molecular biology and evolution, 30(7), 1713-1719. DOI: https://doi.org/10.1093/molbev/mst069

Gupta, S., Malviya, N., Kushwaha, H., Nasim, J., Bisht, N. C., Singh, V., & Yadav, D. (2015). Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. Planta, 241(3), 549-562. DOI: https://doi.org/10.1007/s00425-014-2239-3

Higo, K., Ugawa, Y., Iwamoto, M., & Higo, H. (1998). PLACE: a database of plant cis-acting regulatory DNA elements. [Research Support, Non-U.S. Gov't]. Nucleic Acids Res, 26(1), 358-359. DOI: https://doi.org/10.1093/nar/26.1.358

Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. [Research Support, Non-U.S. Gov't]. Nucleic Acids Res, 27(1), 297-300 DOI: https://doi.org/10.1093/nar/27.1.297

Horton, P., Park, K.-J., Obayashi, T., & Nakai, K. (2006). Protein subcellular localization prediction with Wolf PSORT. Paper presented at the Proceedings of the 4th Asia-Pacific bioinformatics conference. DOI: https://doi.org/10.1142/9781860947292_0007

Hou, H., Wu, P., Gao, L., Zhang, C., & Hou, X. (2019). Characterization and expression profile analysis of YABBY family genes in Pak-choi (Brassica rapa ssp. chinensis) under abiotic stresses and hormone treatments. Plant Growth Regulation, 87(3), 421-432. DOI: https://doi.org/10.1007/s10725-019-00475-5

http://cucurbitgenomics.org/. http://pfam.xfam.org/.

Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. [Research Support, Non-U.S. Gov't]. Bioinformatics, 31(8), 1296-1297. DOI: https://doi.org/10.1093/bioinformatics/btu817

Huang, Z., Van Houten, J., Gonzalez, G., Xiao, H., & van der Knaap, E. (2013). Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Molecular genetics and genomics, 288(3), 111-129. DOI: https://doi.org/10.1007/s00438-013-0733-0

Hurst, L. D. (2002). The Ka/Ks ratio: diagnosing the form of sequence evolution. TRENDS in Genetics, 9(18), 486-487. DOI: https://doi.org/10.1016/S0168-9525(02)02722-1

Jones, D. M., & Vandepoele, K. (2020). Identification and evolution of gene regulatory networks: insights from comparative studies in plants. Curr Opin Plant Biol, 54, 42-48. DOI: https://doi.org/10.1016/j.pbi.2019.12.008

Kanaya, E., Nakajima, N., & Okada, K. (2002). Non-sequence-specific DNA binding by the Filamentous Flower protein from Arabidopsis thaliana is reduced by EDTA. Journal of Biological Chemistry, 277(14), 11957-11964. DOI: https://doi.org/10.1074/jbc.M108889200

Koralewski, T. E., & Krutovsky, K. V. (2011). Evolution of exon-intron structure and alternative splicing. PloS one, 6(3), e18055. DOI: https://doi.org/10.1371/journal.pone.0018055

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547-1549. DOI: https://doi.org/10.1093/molbev/msy096

Kumaran, M. K., Bowman, J. L., & Sundaresan, V. (2002). YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. The Plant Cell, 14(11), 2761-2770. DOI: https://doi.org/10.1105/tpc.004911

Kyriacou, M. C., Leskovar, D. I., Colla, G., & Rouphael, Y. (2018). Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. Scientia Horticulturae, 234, 393-408. DOI: https://doi.org/10.1016/j.scienta.2018.01.032

Lee, J.-Y., Baum, S. F., Alvarez, J., Patel, A., Chitwood, D. H., & Bowman, J. L. (2005). Activation of CRABS CLAW in the nectaries and carpels of Arabidopsis. The Plant Cell, 17(1), 25-36. DOI: https://doi.org/10.1105/tpc.104.026666

Letunic, I., & Bork, P. (2018). 20 years of the SMART protein domain annotation resource. Nucleic acids research, 46(D1), D493-D496. DOI: https://doi.org/10.1093/nar/gkx922

Li, Z., Li, G., Cai, M., Priyadarshani, S. V., Aslam, M., Zhou, Q., Qin, Y. (2019). Genome-wide analysis of the YABBY transcription factor family in pineapple and functional identification of AcYABBY4 involvement in salt stress. International journal of molecular sciences, 20(23), 5863. DOI: https://doi.org/10.3390/ijms20235863

Lijavetzky, D., Carbonero, P., & Vicente-Carbajosa, J. (2003). Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC evolutionary biology, 3(1), 17. DOI: https://doi.org/10.1186/1471-2148-3-17

Lijavetzky, D., Carbonero, P., & Vicente-Carbajosa, J. (2003). Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. [Comparative Study

Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Marchler-Bauer, A. (2020). CDD/SPARCLE: the conserved domain database in 2020. [Research Support, N.I.H., Intramural]. Nucleic Acids Res, 48(D1), D265-D268. DOI: https://doi.org/10.1093/nar/gkz991

Ma, J., Li, M. Y., Wang, F., Tang, J., & Xiong, A. S. (2015). Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Genomics, 16, 33-33. DOI: https://doi.org/10.1186/s12864-015-1242-9

Malviya, N., Gupta, S., Singh, V., Yadav, M., Bisht, N., Sarangi, B., & Yadav, D. (2015). Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.). Molecular biology reports, 42(2), 535-552. DOI: https://doi.org/10.1007/s11033-014-3797-y

Maoto, M. M., Beswa, D., & Jideani, A. I. (2019). Watermelon as a potential fruit snack. International Journal of food properties, 22(1), 355-370. DOI: https://doi.org/10.1080/10942912.2019.1584212

Mehra, M., Pasricha, V., & Gupta, R. K. (2015). Estimation of nutritional, phytochemical and antioxidant activity of seeds of musk melon (Cucumis melo) and water melon (Citrullus lanatus) and nutritional analysis of their respective oils. Journal of Pharmacognosy and Phytochemistry, 3(6), 98-102.

Moore, R. C., & Purugganan, M. D. (2005). The evolutionary dynamics of plant duplicate genes. Current opinion in plant biology, 8(2), 122-128. DOI: https://doi.org/10.1016/j.pbi.2004.12.001

Morgan, C. C., Loughran, N. B., Walsh, T. A., Harrison, A. J., & O'Connell, M. J. (2010). Positive selection neighboring functionally essential sites and disease-implicated regions of mammalian reproductive proteins. BMC evolutionary biology, 10(1), 39. DOI: https://doi.org/10.1186/1471-2148-10-39

Nasim, J., Malviya, N., Kumar, R., & Yadav, D. (2016). Genome-wide bioinformatics analysis of Dof transcription factor gene family of chickpea and its comparative phylogenetic assessment with Arabidopsis and rice. Plant Systematics and Evolution, 302(8), 1009-1026. DOI: https://doi.org/10.1007/s00606-016-1314-6

Naz, A., Butt, M. S., Sultan, M. T., Qayyum, M. M. N., & Niaz, R. S. (2014). Watermelon lycopene and allied health claims. EXCLI journal, 13, 650.

Nosaka, M., Ono, A., Ishiwata, A., Shimizu-Sato, S., Ishimoto, K., Noda, Y., & Sato, Y. (2013). Expression of the rice microRNA miR820 is associated with epigenetic modifications at its own locus. Genes Genet Syst, 88(2), 105-112. DOI: https://doi.org/10.1266/ggs.88.105

Oberoi, D. P. S., & Sogi, D. S. (2017). Utilization of watermelon pulp for lycopene extraction by response surface methodology. Food Chemistry, 232, 316-321. DOI: https://doi.org/10.1016/j.foodchem.2017.04.038

Panchy, N., Lehti-Shiu, M., & Shiu, S. H. (2016). Evolution of gene duplication in plants. Plant physiology, 171(4), 2294-2316. DOI: https://doi.org/10.1104/pp.16.00523

Research Support, Non-U.S. Gov't]. BMC Evol Biol, 3, 17.

Research Support, U.S. Gov't, Non-P.H.S.]. PLoS One, 6(3), e18055.

Review]. Plant Physiol, 171(4), 2294-2316.

Rombauts, S., Déhais, P., Van Montagu, M., & Rouzé, P. (1999). PlantCARE, a plant cis-acting regulatory element database. Nucleic acids research, 27(1), 295-296. DOI: https://doi.org/10.1093/nar/27.1.295

Romdhane, M. B., Haddar, A., Ghazala, I., Jeddou, K. B., Helbert, C. B., & Ellouz-Chaabouni, S. (2017). Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities. Food Chemistry, 216, 355-364. DOI: https://doi.org/10.1016/j.foodchem.2016.08.056

Samad, A. F. A. (2017). MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. Frontiers in Plant Science. 8, 565. DOI: https://doi.org/10.3389/fpls.2017.00565

Sawa, S., Watanabe, K., Goto, K., Kanaya, E., Morita, E. H., & Okada, K. (1999). Filamentous Flower, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes & development, 13(9), 1079-1088. DOI: https://doi.org/10.1101/gad.13.9.1079

Sharif, R., Xie, C., Wang, J., Cao, Z., Zhang, H., Chen, P., & Li, Y. (2020). Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses. International journal of biological macromolecules, 158, 502-520. DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.124

Siegfried, K. R., Eshed, Y., Baum, S. F., Otsuga, D., Drews, G. N., & Bowman, J. L. (1999). Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 126(18), 4117-4128. DOI: https://doi.org/10.1242/dev.126.18.4117

Song, Q., Joshi, M., & Joshi, V. (2020). Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings. International journal of molecular sciences, 21(17), 6036-6036. DOI: https://doi.org/10.3390/ijms21176036

Song, Q., Joshi, M., DiPiazza, J., & Joshi, V. (2020). Functional relevance of citrulline in the vegetative tissues of watermelon during abiotic stresses. Frontiers in Plant Science, 11, 512-512.

Song, Q., Joshi, M., DiPiazza, J., & Joshi, V. (2020). Functional relevance of citrulline in the vegetative tissues of watermelon during abiotic stresses. Frontiers in Plant Science, 11, 512. DOI: https://doi.org/10.3389/fpls.2020.00512

Spanudakis, E. (2014). The role of microRNAs in the control of flowering time. J Exp Bot. DOI: https://doi.org/10.1093/jxb/ert453

Taylor, J. S., & Raes, J. (2004). Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet., 38, 615-643. DOI: https://doi.org/10.1146/annurev.genet.38.072902.092831

Terzi, L. C. (2008). Regulation of Flowering Time by RNA Processing. Springer Link. DOI: https://doi.org/10.1007/978-3-540-76776-3_11

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680. DOI: https://doi.org/10.1093/nar/22.22.4673

Toriba, T., Harada, K., Takamura, A., Nakamura, H., Ichikawa, H., Suzaki, T., & Hirano, H.-Y. (2007). Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Molecular genetics and genomics, 277(5), 457-468. DOI: https://doi.org/10.1007/s00438-006-0202-0

Villanueva, J. M., Broadhvest, J., Hauser, B. A., Meister, R. J., Schneitz, K., & Gasser, C. S. (1999). INNER NO OUTER regulates abaxial–adaxial patterning in Arabidopsis ovules. Genes & development, 13(23), 3160-3169. DOI: https://doi.org/10.1101/gad.13.23.3160

Wang, P., Wang, S., Chen, Y., Xu, X., Guang, X., & Zhang, Y. (2019). Genome-wide analysis of the MADS-Box gene family in watermelon. Computational biology and chemistry, 80, 341-350. DOI: https://doi.org/10.1016/j.compbiolchem.2019.04.013

Wang, Y., Li, J., & Paterson, A. H. (2013). MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. [Research Support, U.S. Gov't, Non-P.H.S.]. Bioinformatics, 29(11), 1458-1460 DOI: https://doi.org/10.1093/bioinformatics/btt150

Wei, Q., Wang, W., Hu, T., Hu, H., Mao, W., Zhu, Q., & Bao, C. (2018). Genome-wide identification and characterization of Dof transcription factors in eggplant (Solanum melongena L.). PeerJ, 6, e4481. DOI: https://doi.org/10.7717/peerj.4481

Wen, C. L., Cheng, Q., Zhao, L., Mao, A., Yang, J., Yu, S.,Xu, Y. (2016). Identification and characterisation of Dof transcription factors in the cucumber genome. [Research Support, Non-U.S. Gov't]. Sci Rep, 6, 23072. DOI: https://doi.org/10.1038/srep23072

Wu, J., Fu, L., & Yi, H. (2016). Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type. [Research Support, Non-U.S. Gov't]. PLoS One, 11(4), e0154330. DOI: https://doi.org/10.1371/journal.pone.0154330

Xu, M., Hu, T., Zhao, J., Park, M.-Y., Earley, K. W., Wu, G., Poethig, R. S. (2016a). Developmental Functions of miR156-Regulated Squamosa Promoter Binding Protein-Like (SPL) Genes in Arabidopsis thaliana. PLoS genetics, 12(8), e1006263-e1006263.

Xu, M., Hu, T., Zhao, J., Park, M.-Y., Earley, K. W., Wu, G., Poethig, R. S. (2016b). Developmental Functions of miR156-Regulated Squamosa Promoter Binding Protein-Like (SPL) Genes in Arabidopsis thaliana. PLOS Genetics, 12(8), e1006263. DOI: https://doi.org/10.1371/journal.pgen.1006263

Xu, P., Chen, H., Ying, L., & Cai, W. (2016a). AtDOF5.4/OBP4, a DOF Transcription Factor Gene that Negatively Regulates Cell Cycle Progression and Cell Expansion in Arabidopsis thaliana. [Research Support, Non-U.S. Gov't]. Sci Rep, 6, 27705.

Xu, P., Chen, H., Ying, L., & Cai, W. (2016b). AtDOF5.4/OBP4, a DOF Transcription Factor Gene that Negatively Regulates Cell Cycle Progression and Cell Expansion in Arabidopsis thaliana. Sci Rep, 6, 27705-27705. DOI: https://doi.org/10.1038/srep27705

Yamada, T., Ito, M., & Kato, M. (2004). YABBY2-homologue expression in lateral organs of Amborella trichopoda (Amborellaceae). International journal of plant sciences, 165(6), 917-924. DOI: https://doi.org/10.1086/423793

Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y., & Hirano, H.-Y. (2004). The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. The Plant Cell, 16(2), 500-509. DOI: https://doi.org/10.1105/tpc.018044

Yanagisawa, S., & Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal, 17(2), 209-214. DOI: https://doi.org/10.1046/j.1365-313X.1999.00363.x

Yang, X., & Tuskan, G. A. (2006). Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant physiology, 142(3), 820-830. DOI: https://doi.org/10.1104/pp.106.083642

Yang, Z., & Bielawski, J. P. (2000). Statistical methods for detecting molecular adaptation. Trends in ecology & evolution, 15(12), 496-503. DOI: https://doi.org/10.1016/S0169-5347(00)01994-7

Yang, Z., Gong, Q., Wang, L., Jin, Y., Xi, J., Li, Z., . Chen, Q. (2018). Genome-wide study of YABBY genes in upland cotton and their expression patterns under different stresses. Frontiers in genetics, 9, 33. DOI: https://doi.org/10.3389/fgene.2018.00033

Yin, S., Li, S., Gao, Y., Bartholomew, E. S., Wang, R., Yang, H., Liu, X. (2022). Genome-Wide Identification of YABBY Gene Family in Cucurbitaceae and Expression Analysis in Cucumber (Cucumis sativus L.). Genes, 13(3), 467.

Yin, S., Li, S., Gao, Y., Bartholomew, E. S., Wang, R., Yang, H., Liu, X. (2022). Genome-wide identification of YABBY gene family in Cucurbitaceae and expression analysis in Cucumber (Cucumis sativus L.). Genes, 13(3), 467. DOI: https://doi.org/10.3390/genes13030467

Yuan, J., Shen, C., Xin, J., Li, Z., Li, X., & Zhou, J. (2020). Genome-wide Characterization and Expression Analysis of YABBY Gene Family in Three Cultivars of Cucurbita Linn. And Their Response of Salt Stress in Cucurbita Moschata. DOI: https://doi.org/10.21203/rs.3.rs-121953/v1

Zhang, S., Wang, L., Sun, X., Li, Y., Yao, J., Nocker, S. v., & Wang, X. (2019). Genome-wide analysis of the YABBY gene family in grapevine and functional characterization of VvYABBY4. Frontiers in plant science, 10, 1207. DOI: https://doi.org/10.3389/fpls.2019.01207

Zhao, S.-P., Lu, D., Yu, T.-F., Ji, Y.-J., Zheng, W.-J., Zhang, S.-X., . Cui, X.-Y. (2017). Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 involvement in high salt and drought stresses. Plant Physiology and Biochemistry, 119, 132-146 DOI: https://doi.org/10.1016/j.plaphy.2017.08.026

Downloads

Published

2024-01-06

How to Cite

Nisa, M.- ul-., Shafiq, M., Manzoor, M., Bilal, M., Manzoor, T., Anees, M. M., … Haider, M. S. (2024). Genome-wide Analysis of Plant Specific YABBY Transcription Factor Gene Family in Watermelon (Citrullus lanatus) and Arabidopsis. Journal of Applied Research in Plant Sciences , 5(01), 63–78. https://doi.org/10.38211/joarps.2024.05.179

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)