Genome-Wide Analysis of the Ethylene-Insensitive3-Like Gene Family in Cucumber (Cucumis sativus)

Authors

  • Rabia Mushtaq Department of Horticulture, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muziyen Khan Department of Horticulture, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Mujahid Manzoor University of the Punjab, Lahore
  • Muhammad Shafiq Department of Horticulture, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Bilal Department of Agronomy, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Tariq Manzoor Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • Muhammad Ali Department of Entomology, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Hafiz Sabah-Ud-Din Mazhar Department of Horticulture, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muneeb Hashmi Department of Horticulture, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muazzam Anees Department of Horticulture, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Rizwan Department of Food Science and Technology, Faculty of Agriculture sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Saleem Haider Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan

DOI:

https://doi.org/10.38211/joarps.2023.04.02.178

Keywords:

Cucumber, EIL protein, Genome-wide analysis, genome sequences, Domains, MEME, phylogenic tree.

Abstract

The ethylene hormone identification process, which regulates the overall rate of fruit development and formation is heavily dependent on the ethylene-insensitive 3/Ethylene-insensitive3-like (EIN3/EIL) protein family. EIL harmone improve the plant's defense against both biotic and abiotic stresses. Research of the EIL family has been done for many plant species but in cucumber, this Gene family has not been investigated yet. Mining of the cucumber genome has identified four member of the EIL gene family using various bioinformatics tool. EIL proteins in cucumbers clustered into 4 subgroups (groups 1,2,3,4) based on the established cucumber classification. Sequence analysis and phylogeny research showed that CsEIL3 and other EIN3/EIL plant proteins isolated from a progenitor signal at the time of emergence have a high degree of similarity; CsEIN3 is involved in the flower growth process. Comprehensive genome evaluation of the EIL gene family in cucumber provides the ability to analyze and analyze the performance of this gene family.

Downloads

Download data is not yet available.

References

Xin, T., Z. Zhang, et al. (2019). "Genetic Regulation of Ethylene Dosage for Cucumber Fruit Elongation."Plant Cell 31(5): 1063-1076. DOI: https://doi.org/10.1105/tpc.18.00957

Binder, B. M. (2020). "Ethylene signaling in plants."J Biol Chem 295(22): 7710-7725. DOI: https://doi.org/10.1074/jbc.REV120.010854

Bailey, Timothy L., James Johnson, Charles E. Grant, and William S. Noble. 2015. “The MEME Suite.” Nucleic Acids Research 43(W1): W39–49

Felsenstein, Joseph. 1985. “Confidence Limits on Phylogenies: an Approach Using The Bootstrap.” Evolution 39(4): 783–91 (April 3, 2021). DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Kumar, Sudhir et al. 2018. “MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms” ed. Fabia Ursula Battistuzzi. Molecular Biology and Evolution 35(6): 1547–49. (April 3, 2021). DOI: https://doi.org/10.1093/molbev/msy096

Saitou, N., and M. Nei. 1987. “The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees.” Molecular Biology and Evolution 4(4): 406-25. https://academic.oup.com/mbe/article/4/4/406/1029664/The-neighbourjoining-method-a-new-method-for (April 3, 2021).

Zuckerkandl, Emile, and Linus Pauling. 1965. “Evolutionary Divergence and Convergence in Proteins.” In Evolving Genes and Proteins, Elsevier, 97–166. Higo, K., Ugawa, Y., Iwamoto, M., and Higo, H. (1998). PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res, 26, 358-9. DOI: https://doi.org/10.1093/nar/26.1.358

Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. The MEME suite. Nucleic acids research, 43(W1), W39-W49(2015). DOI: https://doi.org/10.1093/nar/gkv416

Bie, B., Pan, J., He, H., Yang, X., Zhao, J., & Cai, R. Molecular cloning and expression analysis of the ethylene insensitive3 (EIN3) gene in cucumber (Cucumis sativus). Genet Mol Res, 12(4), 4179-4191(2013). DOI: https://doi.org/10.4238/2013.October.7.4

Carbone, F., Bruno, L., Perrotta, G., Bitonti, M. B., Muzzalupo, I., & Chiappetta, A. Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea L. transcriptome. PLoS One, 14(8), e0221460(2019). DOI: https://doi.org/10.1371/journal.pone.0221460

Cokol, M., Nair, R., & Rost, B. Finding nuclear localization signals. EMBO reports, 1(5), 411-415(2000). DOI: https://doi.org/10.1093/embo-reports/kvd092

Gu, X., Zou, Y., Su, Z., Huang, W., Zhou, Z., Arendsee, Z., & Zeng, Y. An update of DIVERGE software for functional divergence analysis of protein family. Molecular biology and evolution, 30(7), 1713-1719(2013). DOI: https://doi.org/10.1093/molbev/mst069

Gupta, S., Malviya, N., Kushwaha, H., Nasim, J., Bisht, N. C., Singh, V., & Yadav, D. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. Planta, 241(3), 549-562(2015). DOI: https://doi.org/10.1007/s00425-014-2239-3

Koralewski, T. E., & Krutovsky, K. V. Evolution of exon-intron structure and alternative splicing. PloS one, 6(3), e18055(2011). DOI: https://doi.org/10.1371/journal.pone.0018055

Li, C., Zhao, W., Qin, C., Yu, G., Ma, Z., Guo, Y., . Chen, J. Comparative transcriptome analysis reveals changes in gene expression in sea cucumber (Holothuria leucospilota) in response to acute temperature stress. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 40, 100883(2021). DOI: https://doi.org/10.1016/j.cbd.2021.100883

Lijavetzky, D., Carbonero, P., & Vicente-Carbajosa, J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC evolutionary biology, 3(1), 17(2003). DOI: https://doi.org/10.1186/1471-2148-3-17

Liu, H., Wu, M., Zhu, D., Pan, F., Wang, Y., & Xiang, Y. Genome-Wide analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis). BMC Plant Biol, 17(1), 29(2017). doi:10.1186/s12870-017-0980-z DOI: https://doi.org/10.1186/s12870-017-0980-z

Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R.,. Marchler-Bauer, A. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res, 48(D1), D265-D268(2020). DOI: https://doi.org/10.1093/nar/gkz991

Malviya, N., Gupta, S., Singh, V., Yadav, M., Bisht, N., Sarangi, B., & Yadav, D. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.). Molecular biology reports, 42(2), 535-552(2015). DOI: https://doi.org/10.1007/s11033-014-3797-y

Pierik, R., Tholen, D., Poorter, H., Visser, E. J., & Voesenek, L. A. The Janus face of ethylene: growth inhibition and stimulation. Trends in plant science, 11(4), 176-183(2006). DOI: https://doi.org/10.1016/j.tplants.2006.02.006

Rombauts, S., Déhais, P., Van Montagu, M., & Rouzé, P. PlantCARE, a plant cis-acting regulatory element database. Nucleic acids research, 27(1), 295-296(1999). DOI: https://doi.org/10.1093/nar/27.1.295

Samad, A. F. A. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. Frontiers in Plant Science(2017). DOI: https://doi.org/10.3389/fpls.2017.00565

Spanudakis, E. The role of microRNAs in the control of flowering time. Journal of Experimental Botany(2014). DOI: https://doi.org/10.1093/jxb/ert453

Tatlioglu, T. Cucumber: Cucumis sativus L Genetic improvement of vegetable crops (pp. 197-234): Elsevier.(1993) DOI: https://doi.org/10.1016/B978-0-08-040826-2.50017-5

Terzi, L. C. Regulation of Flowering Time by RNA Processing. Springer Link(2008). DOI: https://doi.org/10.1007/978-3-540-76776-3_11

Wang, G. F., Li, W. Q., Li, W. Y., Wu, G. L., Zhou, C. Y., & Chen, K. M. Characterization of Rice NADPH oxidase genes and their expression under various environmental conditions. Int J Mol Sci, 14(5), 9440- DOI: https://doi.org/10.3390/ijms14059440

Xu, X., Pan, J., He, M., Tian, H., Qi, X., Xu, Q., & Chen, X. Transcriptome profiling reveals key genes related to astringency during cucumber fruit development. 3 Biotech, 9(11), 1-9(2019). DOI: https://doi.org/10.1007/s13205-019-1922-2

Yang, X., & Tuskan, G. A. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant physiology, 142(3), 820-830(2006). DOI: https://doi.org/10.1104/pp.106.083642

Downloads

Published

2023-05-25

How to Cite

Mushtaq, R., Khan, M., Manzoor, M., Shafiq, M., Bilal, M., Manzoor, T., … Haider, M. S. (2023). Genome-Wide Analysis of the Ethylene-Insensitive3-Like Gene Family in Cucumber (Cucumis sativus). Journal of Applied Research in Plant Sciences , 4(02), 702–710. https://doi.org/10.38211/joarps.2023.04.02.178

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)