Genome-wide Identification and Characterization of Plant-specific Transcription Factor YABBY Gene Family in Cucumber (Cucumis sativus) and its Comparison with Arabidopsis to Reveal its Role in Abiotic Stress Responses
DOI:
https://doi.org/10.38211/joarps.2022.3.2.40Abstract
Plant-specific transcription factor (PSTFs) YABBY is one of the vital transcription factors that play a crucial role in abaxial organ development, carpel formation and abiotic stress. Although the Cucumber genome (Cucumis sativus) has been published, functional studies are still needed to understand cucumber. The cucumber genome was used in this study to identify YABBY gene family member by using a set of various bioinformatic tools. Eight YABBY gene family members were identified that were unevenly distributed on different chromosomes. Eight members of the YABBY gene family in cucumber were divided into five subgroups (FIL/YAB3), CRC, INO, YAB2, and YAB5 based on the published Arabidopsis YABBY gene classification. The structure of PSTF YABBY was seen to be conserved throughout the process of evolution through Motif analysis, Conserved Domain Analysis and Gene structure Intron Exon Display. PSTF YABBY has roles in wound healing, abiotic stress like cold, heat and drought stress, phytohormone responses and transcription initiation. CsYABBY4 was seen to be over-expressed under long day and heat stress conditions, implying its significant role in heat stress.
Downloads
References
Araújo, W. L., Martins, A. O., Fernie, A. R., & Tohge, T. (2014). 2-oxoglutarate: Linking tca cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. Frontiers in plant science, 5, 552. DOI: https://doi.org/10.3389/fpls.2014.00552
Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The meme suite. Nucleic acids research, 43(W1), W39-W49. DOI: https://doi.org/10.1093/nar/gkv416
Bisognin, D. A. (2002). Origin and evolution of cultivated cucurbits. Ciência Rural, 32, 715-723. DOI: https://doi.org/10.1590/S0103-84782002000400028
Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in arabidopsis. The Plant Cell, 1(1), 37-52. DOI: https://doi.org/10.1105/tpc.1.1.37
Bulow, L., & Hehl, R. (2016). Bioinformatic identification of conserved cis-sequences in coregulated genes. Methods Mol Biol, 1482, 233-245. doi:10.1007/978-1-4939-6396-6_15 DOI: https://doi.org/10.1007/978-1-4939-6396-6_15
Cavagnaro, P. F., Senalik, D. A., Yang, L., Simon, P. W., Harkins, T. T., Kodira, C. D., . Weng, Y. (2010). Genome-wide characterization of simple sequence repeats in cucumber (cucumis sativus l.). BMC genomics, 11(1), 1-18. DOI: https://doi.org/10.1186/1471-2164-11-569
Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). Tbtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194-1202. doi:https://doi.org/10.1016/j.molp.2020.06.009 DOI: https://doi.org/10.1016/j.molp.2020.06.009
Dai, M., Hu, Y., Zhao, Y., Liu, H., & Zhou, D.-X. (2007). A wuschel-like homeobox gene represses a yabby gene expression required for rice leaf development. Plant physiology, 144(1), 380-390. DOI: https://doi.org/10.1104/pp.107.095737
E., Z., & L., P. (1965). Evolutionary divergence and convergence in proteins.
Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., . Mistry, J. (2014). Pfam: The protein families database. Nucleic acids research, 42(D1), D222-D230. DOI: https://doi.org/10.1093/nar/gkt1223
Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the expasy server The proteomics protocols handbook (pp. 571-607): Springer. DOI: https://doi.org/10.1385/1-59259-890-0:571
Goodstein, D., Batra, S., Carlson, J., Hayes, R., Phillips, J., Shu, S., Rokhsar, D. (2014). Phytozome comparative plant genomics portal.
Ha, C. M., Jun, J. H., & Fletcher, J. C. (2010). Control of arabidopsis leaf morphogenesis through regulation of the yabby and knox families of transcription factors. Genetics, 186(1), 197-206. DOI: https://doi.org/10.1534/genetics.110.118703
He, Y., Li, W., Lv, J., Jia, Y., Wang, M., & Xia, G. (2012). Ectopic expression of a wheat myb transcription factor gene, tamyb73, improves salinity stress tolerance in arabidopsis thaliana. Journal of Experimental Botany, 63(3), 1511-1522. DOI: https://doi.org/10.1093/jxb/err389
Higo, K., Ugawa, Y., Iwamoto, M., & Higo, H. (1998). Place: A database of plant cis-acting regulatory DNA elements. Nucleic Acids Res, 26(1), 358-359. doi:10.1093/nar/26.1.358 DOI: https://doi.org/10.1093/nar/26.1.358
Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (place) database: 1999. Nucleic Acids Res, 27(1), 297-300. doi:10.1093/nar/27.1.297 DOI: https://doi.org/10.1093/nar/27.1.297
Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). Gsds 2.0: An upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297. doi:10.1093/bioinformatics/btu817 DOI: https://doi.org/10.1093/bioinformatics/btu817
Hudson, B. P., Martinez-Yamout, M. A., Dyson, H. J., & Wright, P. E. (2004). Recognition of the mrna au-rich element by the zinc finger domain of tis11d. Nature structural & molecular biology, 11(3), 257-264. DOI: https://doi.org/10.1038/nsmb738
J., F. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 783-791. DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Jones, D. M., & Vandepoele, K. (2020). Identification and evolution of gene regulatory networks: Insights from comparative studies in plants. Curr Opin Plant Biol, 54, 42-48. doi:10.1016/j.pbi.2019.12.008 DOI: https://doi.org/10.1016/j.pbi.2019.12.008
Koralewski, T. E., & Krutovsky, K. V. (2011). Evolution of exon-intron structure and alternative splicing. PloS one, 6(3), e18055. DOI: https://doi.org/10.1371/journal.pone.0018055
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). Mega x: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096
Li, Z., Li, G., Cai, M., Priyadarshani, S. V., Aslam, M., Zhou, Q.,. Qin, Y. (2019). Genome-wide analysis of the yabby transcription factor family in pineapple and functional identification of acyabby4 involvement in salt stress. International journal of molecular sciences, 20(23), 5863. DOI: https://doi.org/10.3390/ijms20235863
Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., . Marchler-Bauer, A. (2020). Cdd/sparcle: The conserved domain database in 2020. Nucleic Acids Res, 48(D1), D265-D268. doi:10.1093/nar/gkz991 DOI: https://doi.org/10.1093/nar/gkz991
Mousavizadeh, S. J., Mashayekhi, K., Garmakhany, A. D., Ehteshamnia, A., & Jafari, S. (2010). Evaluation of some physical properties of cucumber (cucumis sativus l.). Nong Ye Ke Xue Yu Ji Shu, 4(4), 107.
Mukherjee, P. K., Nema, N. K., Maity, N., & Sarkar, B. K. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia, 84, 227-236. DOI: https://doi.org/10.1016/j.fitote.2012.10.003
P.H.A., S., & R.R., S. (1973). Numerical taxonomy.
Ramirez-Tejero, J. A., Jimenez-Ruiz, J., Leyva-Perez, M. O., Barroso, J. B., & Luque, F. (2020). Gene expression pattern in olive tree organs (olea europaea l.). Genes (Basel), 11(5). doi:10.3390/genes11050544 DOI: https://doi.org/10.3390/genes11050544
Rombauts, S., Déhais, P., Van Montagu, M., & Rouzé, P. (1999). Plantcare, a plant cis-acting regulatory element database. Nucleic acids research, 27(1), 295-296. DOI: https://doi.org/10.1093/nar/27.1.295
S., K., G., S., M., L., C., K., & K., T. (2018). Mega x: Molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 1547-1549. DOI: https://doi.org/10.1093/molbev/msy096
Samad, A. F. A. (2017). Microrna and transcription factor: Key players in plant regulatory network. Frontiers in Plant Science. DOI: https://doi.org/10.3389/fpls.2017.00565
Sarojam, R., Sappl, P. G., Goldshmidt, A., Efroni, I., Floyd, S. K., Eshed, Y., & Bowman, J. L. (2010). Differentiating arabidopsis shoots from leaves by combined yabby activities. The Plant Cell, 22(7), 2113-2130. DOI: https://doi.org/10.1105/tpc.110.075853
Tatlioglu, T. (1993). Cucumber: Cucumis sativus l Genetic improvement of vegetable crops (pp. 197-234): Elsevier. DOI: https://doi.org/10.1016/B978-0-08-040826-2.50017-5
Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2003). Multiple sequence alignment using clustalw and clustalx. Current protocols in bioinformatics(1), 2.3. 1-2.3. 22. DOI: https://doi.org/10.1002/0471250953.bi0203s00
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680. DOI: https://doi.org/10.1093/nar/22.22.4673
Wan, T., Liu, Z.-M., Li, L.-F., Leitch, A. R., Leitch, I. J., Lohaus, R., Liu, Y. (2018). A genome for gnetophytes and early evolution of seed plants. Nature Plants, 4(2), 82-89. DOI: https://doi.org/10.1038/s41477-017-0097-2
Wang, Y., Li, J., & Paterson, A. H. (2013). Mcscanx-transposed: Detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics, 29(11), 1458-1460. doi:10.1093/bioinformatics/btt150 DOI: https://doi.org/10.1093/bioinformatics/btt150
Xia, J., Wang, D., Peng, Y., Wang, W., Wang, Q., Xu, Y., . . . Xu, X. (2021). Genome-wide analysis of the yabby transcription factor family in rapeseed (brassica napus l.). Genes, 12(7), 981. DOI: https://doi.org/10.3390/genes12070981
Yin, S., Li, S., Gao, Y., Bartholomew, E. S., Wang, R., Yang, H., Liu, X. (2022). Genome-wide identification of yabby gene family in cucurbitaceae and expression analysis in cucumber (cucumis sativus l.). Genes, 13(3), 467. DOI: https://doi.org/10.3390/genes13030467
Yuan, J., Shen, C., Xin, J., Li, Z., Li, X., & Zhou, J. (2020). Genome-wide characterization and expression analysis of yabby gene family in three cultivars of cucurbita linn. And their response of salt stress in cucurbita moschata. DOI: https://doi.org/10.21203/rs.3.rs-121953/v1
Zhang, S., Wang, L., Sun, X., Li, Y., Yao, J., Nocker, S. v., & Wang, X. (2019a). Genome-wide analysis of the yabby gene family in grapevine and functional characterization of vvyabby4. Frontiers in plant science, 10, 1207.
Zhang, S., Wang, L., Sun, X., Li, Y., Yao, J., Nocker, S. v., & Wang, X. (2019b). Genome-wide analysis of the yabby gene family in grapevine and functional characterization of vvyabby4. Frontiers in plant science, 1207. DOI: https://doi.org/10.3389/fpls.2019.01207
Zhang, T., Li, C., Li, D., Liu, Y., & Yang, X. (2020). Roles of yabby transcription factors in the modulation of morphogenesis, development, and phytohormone and stress responses in plants. Journal of Plant Research, 133(6), 751-763. DOI: https://doi.org/10.1007/s10265-020-01227-7
Zhang, X., Lai, Y., Zhang, W., Ahmad, J., Qiu, Y., Zhang, X., . Wang, H. (2018). Micrornas and their targets in cucumber shoot apices in response to temperature and photoperiod. BMC genomics, 19(1), 1-15. DOI: https://doi.org/10.1186/s12864-018-5204-x
Zhao, S.-P., Lu, D., Yu, T.-F., Ji, Y.-J., Zheng, W.-J., Zhang, S.-X., Cui, X.-Y. (2017). Genome-wide analysis of the yabby family in soybean and functional identification of gmyabby10 involvement in high salt and drought stresses. Plant Physiology and Biochemistry, 119, 132-146. DOI: https://doi.org/10.1016/j.plaphy.2017.08.026
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Muhammad Muneeb Hashmi, Zuha Kamran, Mujahid Manzoor, Muhammad Shafiq, Masah Qamar, Mehr Un Nisa, Muhammad Saleem Haider
This work is licensed under a Creative Commons Attribution 4.0 International License.