Genome-wide Identification and Characterization of Plant-specific Transcription Factor YABBY Gene Family in Cucumber (Cucumis sativus) and its Comparison with Arabidopsis to Reveal its Role in Abiotic Stress Responses

Authors

  • Muhammad Muneeb Hashmi Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • Zuha Kamran Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • Mujahid Manzoor Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Shafiq Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • Masah Qamar Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • Mehr Un Nisa Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Saleem Haider Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • Muhammad Ashfaq Department of Plant Breeding and Genetics. Faculty of Agricultural Sciences
  • Muhammad Adnan Shahid North Florida Research and Education Center 155 Research Rd. Quincy

DOI:

https://doi.org/10.38211/joarps.2022.3.2.40

Abstract

Plant-specific transcription factor (PSTFs) YABBY is one of the vital transcription factors that play a crucial role in abaxial organ development, carpel formation and abiotic stress. Although the Cucumber genome (Cucumis sativus) has been published, functional studies are still needed to understand cucumber. The cucumber genome was used in this study to identify YABBY gene family member by using a set of various bioinformatic tools. Eight YABBY gene family members were identified that were unevenly distributed on different chromosomes. Eight members of the YABBY gene family in cucumber were divided into five subgroups (FIL/YAB3), CRC, INO, YAB2, and YAB5 based on the published Arabidopsis YABBY gene classification. The structure of PSTF YABBY was seen to be conserved throughout the process of evolution through Motif analysis, Conserved Domain Analysis and Gene structure Intron Exon Display. PSTF YABBY has roles in wound healing, abiotic stress like cold, heat and drought stress, phytohormone responses and transcription initiation. CsYABBY4 was seen to be over-expressed under long day and heat stress conditions, implying its significant role in heat stress.

Downloads

Download data is not yet available.

Author Biographies

Muhammad Ashfaq, Department of Plant Breeding and Genetics. Faculty of Agricultural Sciences

Assitant Professor

Muhammad Adnan Shahid, North Florida Research and Education Center 155 Research Rd. Quincy

Assistant Prfessor 

References

Araújo, W. L., Martins, A. O., Fernie, A. R., & Tohge, T. (2014). 2-oxoglutarate: Linking tca cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. Frontiers in plant science, 5, 552. DOI: https://doi.org/10.3389/fpls.2014.00552

Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The meme suite. Nucleic acids research, 43(W1), W39-W49. DOI: https://doi.org/10.1093/nar/gkv416

Bisognin, D. A. (2002). Origin and evolution of cultivated cucurbits. Ciência Rural, 32, 715-723. DOI: https://doi.org/10.1590/S0103-84782002000400028

Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in arabidopsis. The Plant Cell, 1(1), 37-52. DOI: https://doi.org/10.1105/tpc.1.1.37

Bulow, L., & Hehl, R. (2016). Bioinformatic identification of conserved cis-sequences in coregulated genes. Methods Mol Biol, 1482, 233-245. doi:10.1007/978-1-4939-6396-6_15 DOI: https://doi.org/10.1007/978-1-4939-6396-6_15

Cavagnaro, P. F., Senalik, D. A., Yang, L., Simon, P. W., Harkins, T. T., Kodira, C. D., . Weng, Y. (2010). Genome-wide characterization of simple sequence repeats in cucumber (cucumis sativus l.). BMC genomics, 11(1), 1-18. DOI: https://doi.org/10.1186/1471-2164-11-569

Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). Tbtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194-1202. doi:https://doi.org/10.1016/j.molp.2020.06.009 DOI: https://doi.org/10.1016/j.molp.2020.06.009

Dai, M., Hu, Y., Zhao, Y., Liu, H., & Zhou, D.-X. (2007). A wuschel-like homeobox gene represses a yabby gene expression required for rice leaf development. Plant physiology, 144(1), 380-390. DOI: https://doi.org/10.1104/pp.107.095737

E., Z., & L., P. (1965). Evolutionary divergence and convergence in proteins.

Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., . Mistry, J. (2014). Pfam: The protein families database. Nucleic acids research, 42(D1), D222-D230. DOI: https://doi.org/10.1093/nar/gkt1223

Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the expasy server The proteomics protocols handbook (pp. 571-607): Springer. DOI: https://doi.org/10.1385/1-59259-890-0:571

Goodstein, D., Batra, S., Carlson, J., Hayes, R., Phillips, J., Shu, S., Rokhsar, D. (2014). Phytozome comparative plant genomics portal.

Ha, C. M., Jun, J. H., & Fletcher, J. C. (2010). Control of arabidopsis leaf morphogenesis through regulation of the yabby and knox families of transcription factors. Genetics, 186(1), 197-206. DOI: https://doi.org/10.1534/genetics.110.118703

He, Y., Li, W., Lv, J., Jia, Y., Wang, M., & Xia, G. (2012). Ectopic expression of a wheat myb transcription factor gene, tamyb73, improves salinity stress tolerance in arabidopsis thaliana. Journal of Experimental Botany, 63(3), 1511-1522. DOI: https://doi.org/10.1093/jxb/err389

Higo, K., Ugawa, Y., Iwamoto, M., & Higo, H. (1998). Place: A database of plant cis-acting regulatory DNA elements. Nucleic Acids Res, 26(1), 358-359. doi:10.1093/nar/26.1.358 DOI: https://doi.org/10.1093/nar/26.1.358

Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (place) database: 1999. Nucleic Acids Res, 27(1), 297-300. doi:10.1093/nar/27.1.297 DOI: https://doi.org/10.1093/nar/27.1.297

Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). Gsds 2.0: An upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297. doi:10.1093/bioinformatics/btu817 DOI: https://doi.org/10.1093/bioinformatics/btu817

Hudson, B. P., Martinez-Yamout, M. A., Dyson, H. J., & Wright, P. E. (2004). Recognition of the mrna au-rich element by the zinc finger domain of tis11d. Nature structural & molecular biology, 11(3), 257-264. DOI: https://doi.org/10.1038/nsmb738

J., F. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 783-791. DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Jones, D. M., & Vandepoele, K. (2020). Identification and evolution of gene regulatory networks: Insights from comparative studies in plants. Curr Opin Plant Biol, 54, 42-48. doi:10.1016/j.pbi.2019.12.008 DOI: https://doi.org/10.1016/j.pbi.2019.12.008

Koralewski, T. E., & Krutovsky, K. V. (2011). Evolution of exon-intron structure and alternative splicing. PloS one, 6(3), e18055. DOI: https://doi.org/10.1371/journal.pone.0018055

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). Mega x: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096

Li, Z., Li, G., Cai, M., Priyadarshani, S. V., Aslam, M., Zhou, Q.,. Qin, Y. (2019). Genome-wide analysis of the yabby transcription factor family in pineapple and functional identification of acyabby4 involvement in salt stress. International journal of molecular sciences, 20(23), 5863. DOI: https://doi.org/10.3390/ijms20235863

Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., . Marchler-Bauer, A. (2020). Cdd/sparcle: The conserved domain database in 2020. Nucleic Acids Res, 48(D1), D265-D268. doi:10.1093/nar/gkz991 DOI: https://doi.org/10.1093/nar/gkz991

Mousavizadeh, S. J., Mashayekhi, K., Garmakhany, A. D., Ehteshamnia, A., & Jafari, S. (2010). Evaluation of some physical properties of cucumber (cucumis sativus l.). Nong Ye Ke Xue Yu Ji Shu, 4(4), 107.

Mukherjee, P. K., Nema, N. K., Maity, N., & Sarkar, B. K. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia, 84, 227-236. DOI: https://doi.org/10.1016/j.fitote.2012.10.003

P.H.A., S., & R.R., S. (1973). Numerical taxonomy.

Ramirez-Tejero, J. A., Jimenez-Ruiz, J., Leyva-Perez, M. O., Barroso, J. B., & Luque, F. (2020). Gene expression pattern in olive tree organs (olea europaea l.). Genes (Basel), 11(5). doi:10.3390/genes11050544 DOI: https://doi.org/10.3390/genes11050544

Rombauts, S., Déhais, P., Van Montagu, M., & Rouzé, P. (1999). Plantcare, a plant cis-acting regulatory element database. Nucleic acids research, 27(1), 295-296. DOI: https://doi.org/10.1093/nar/27.1.295

S., K., G., S., M., L., C., K., & K., T. (2018). Mega x: Molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 1547-1549. DOI: https://doi.org/10.1093/molbev/msy096

Samad, A. F. A. (2017). Microrna and transcription factor: Key players in plant regulatory network. Frontiers in Plant Science. DOI: https://doi.org/10.3389/fpls.2017.00565

Sarojam, R., Sappl, P. G., Goldshmidt, A., Efroni, I., Floyd, S. K., Eshed, Y., & Bowman, J. L. (2010). Differentiating arabidopsis shoots from leaves by combined yabby activities. The Plant Cell, 22(7), 2113-2130. DOI: https://doi.org/10.1105/tpc.110.075853

Tatlioglu, T. (1993). Cucumber: Cucumis sativus l Genetic improvement of vegetable crops (pp. 197-234): Elsevier. DOI: https://doi.org/10.1016/B978-0-08-040826-2.50017-5

Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2003). Multiple sequence alignment using clustalw and clustalx. Current protocols in bioinformatics(1), 2.3. 1-2.3. 22. DOI: https://doi.org/10.1002/0471250953.bi0203s00

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680. DOI: https://doi.org/10.1093/nar/22.22.4673

Wan, T., Liu, Z.-M., Li, L.-F., Leitch, A. R., Leitch, I. J., Lohaus, R., Liu, Y. (2018). A genome for gnetophytes and early evolution of seed plants. Nature Plants, 4(2), 82-89. DOI: https://doi.org/10.1038/s41477-017-0097-2

Wang, Y., Li, J., & Paterson, A. H. (2013). Mcscanx-transposed: Detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics, 29(11), 1458-1460. doi:10.1093/bioinformatics/btt150 DOI: https://doi.org/10.1093/bioinformatics/btt150

Xia, J., Wang, D., Peng, Y., Wang, W., Wang, Q., Xu, Y., . . . Xu, X. (2021). Genome-wide analysis of the yabby transcription factor family in rapeseed (brassica napus l.). Genes, 12(7), 981. DOI: https://doi.org/10.3390/genes12070981

Yin, S., Li, S., Gao, Y., Bartholomew, E. S., Wang, R., Yang, H., Liu, X. (2022). Genome-wide identification of yabby gene family in cucurbitaceae and expression analysis in cucumber (cucumis sativus l.). Genes, 13(3), 467. DOI: https://doi.org/10.3390/genes13030467

Yuan, J., Shen, C., Xin, J., Li, Z., Li, X., & Zhou, J. (2020). Genome-wide characterization and expression analysis of yabby gene family in three cultivars of cucurbita linn. And their response of salt stress in cucurbita moschata. DOI: https://doi.org/10.21203/rs.3.rs-121953/v1

Zhang, S., Wang, L., Sun, X., Li, Y., Yao, J., Nocker, S. v., & Wang, X. (2019a). Genome-wide analysis of the yabby gene family in grapevine and functional characterization of vvyabby4. Frontiers in plant science, 10, 1207.

Zhang, S., Wang, L., Sun, X., Li, Y., Yao, J., Nocker, S. v., & Wang, X. (2019b). Genome-wide analysis of the yabby gene family in grapevine and functional characterization of vvyabby4. Frontiers in plant science, 1207. DOI: https://doi.org/10.3389/fpls.2019.01207

Zhang, T., Li, C., Li, D., Liu, Y., & Yang, X. (2020). Roles of yabby transcription factors in the modulation of morphogenesis, development, and phytohormone and stress responses in plants. Journal of Plant Research, 133(6), 751-763. DOI: https://doi.org/10.1007/s10265-020-01227-7

Zhang, X., Lai, Y., Zhang, W., Ahmad, J., Qiu, Y., Zhang, X., . Wang, H. (2018). Micrornas and their targets in cucumber shoot apices in response to temperature and photoperiod. BMC genomics, 19(1), 1-15. DOI: https://doi.org/10.1186/s12864-018-5204-x

Zhao, S.-P., Lu, D., Yu, T.-F., Ji, Y.-J., Zheng, W.-J., Zhang, S.-X., Cui, X.-Y. (2017). Genome-wide analysis of the yabby family in soybean and functional identification of gmyabby10 involvement in high salt and drought stresses. Plant Physiology and Biochemistry, 119, 132-146. DOI: https://doi.org/10.1016/j.plaphy.2017.08.026

Downloads

Published

2022-11-09

How to Cite

Hashmi, M. M., Kamran, Z., Manzoor, M., Shafiq, M., Qamar, M., Nisa, M. U., … Shahid, M. A. (2022). Genome-wide Identification and Characterization of Plant-specific Transcription Factor YABBY Gene Family in Cucumber (Cucumis sativus) and its Comparison with Arabidopsis to Reveal its Role in Abiotic Stress Responses. Journal of Applied Research in Plant Sciences , 3(02), 325–341. https://doi.org/10.38211/joarps.2022.3.2.40

Most read articles by the same author(s)