Varietal Performance of Maize (Zea mays L.) Strains Under Saline Conditions

Authors

  • Muhammad Furqan Ijaz Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
  • Fraza Ijaz 1Soil Bacteriology Section, Agriculture Biotechnology Research Institute, AARI Faisalabad, Pakistan
  • Muhammad Imran Latif Provincial Reference Fertilizer Testing Laboratory-Raiwind, Lahore, Agriculture Department, Government of Punjab, Pakistan
  • Muhammad Nadeem Soil and Water Testing Laboratory Hafizabad, Agriculture Department, Government of Punjab, Pakistan
  • Abid Niaz Soil Bacteriology Section, Agricultural Biotechnology Research Institute, Ayub Agriculture Research Institute-Faisalabad, Agriculture Department, Government of Punjab, Pakistan

DOI:

https://doi.org/10.38211/joarps.2023.04.02.175

Keywords:

salinity, sodicity, gypsum, degraded lands, genetic variation

Abstract

Crop yields are highly affected due to physiochemical properties of soil and climatic conditions of the region. The yield of the crop is drastically impacted in terms of final economic product due to problems which occurs in life cycle of the plant under the stress conditions like, stunted growth, permanent wilting, and delay in leaf initiation as well as oxidative stresses at molecular level. Maize (Zea mays L.), widely used as staple food has an ample amount of fats and fibres. Salt stress decreases maize yield and in this regard a hydroponic study was carried out to screen maize genotypes against two salinity stress levels i.e., 10 mol m-3 NaCl and 100 mol m-3 NaCl under hydroponic conditions. Nine (09) hybrid genotypes, i.e., Pioneer 3335 (V1), Pioneer 32F10 (V2), Syngenta 8441 (V3), Pioneer: 33H25 (V4), Pioneer: 3233 (V5), Monsanto 6142 (V6), Syngenta 8711 (V7), Monsanto 6528 (V8), Pioneer 31P41 (V9) were selected for experiment. Statistically, the analysis showed the highest root-shoot length, root fresh-dry weight, and shoot fresh-dry weight with V3 (Syngenta 8441) and the minimum with V1 (Pioneer 3335). The results showed that root length increased by 35% shoot length increased by 34% while total length was enhanced by 34% in syngenta 8441. The results clearly depicted that the best suited variety for salt affected areas can be recommended as Syngenta 8441 whereas the least tolerant was Pioneer 3335 in terms of physiological, physical, and growth characteristics.

Downloads

Download data is not yet available.

References

Asch, F., Dingkuhn, M., Dörffling, K., & Miezan, K. (2000). Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica, 113, 109-118. DOI: https://doi.org/10.1023/A:1003981313160

Ashraf, M. (2002). Salt tolerance of cotton: some new advances. Critical Reviews in Plant Sciences, 21(1), 1-30. DOI: https://doi.org/10.1080/0735-260291044160

Ashraf, M. Y., Akhtar, K., Sarwar, G., & Ashraf, M. (2005). Role of the rooting system in salt tolerance potential of different guar accessions. Agronomy for sustainable development, 25(2), 243-249. DOI: https://doi.org/10.1051/agro:2005019

de Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., de Abreu, C. E. B., & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56(1), 87-94. DOI: https://doi.org/10.1016/j.envexpbot.2005.01.008

Bastías, E. I., González-Moro, M. B., & González-Murua, C. (2004). Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available. Plant and Soil, 267, 73-84. DOI: https://doi.org/10.1007/s11104-005-4292-y

Carden, D. E., Walker, D. J., Flowers, T. J., & Miller, A. J. (2003). Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant physiology, 131(2), 676-683. DOI: https://doi.org/10.1104/pp.011445

Çiçek, N. U. R. A. N., & Çakırlar, H. (2008). Effects of salt stress on some physiological and photosynthetic parameters at three different temperatures in six soya bean (Glycine max L. Merr.) cultivars. Journal of Agronomy and Crop Science, 194(1), 34-46. DOI: https://doi.org/10.1111/j.1439-037X.2007.00288.x

CRAMER, G. R., EPSTEIN, E., & LÄUCHLI, A. (1988). Kinetics of root elongation of maize in response to short-term exposure to NaCl and elevated calcium concentration. Journal of Experimental Botany, 39(11), 1513-1522. DOI: https://doi.org/10.1093/jxb/39.11.1513

Cuin, T. A., Miller, A. J., Laurie, S. A., & Leigh, R. A. (2003). Potassium activities in cell compartments of salt‐grown barley leaves. Journal of Experimental Botany, 54(383), 657-661. DOI: https://doi.org/10.1093/jxb/erg072

FAO, 2010. Food and Agriculture Organization. http://faostat.fao.org/site/342/ default.aspx.

Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35, 461-481. DOI: https://doi.org/10.1007/s13593-015-0287-0

GOP, Government of Pakistan,finance department. (2022) retrieved from; https://www.finance.gov.pk/

Ijaz, W., Kanwal, S. H. A. M. S. A., Tahir, M. H. N., & Razzaq, H. U. M. E. R. A. (2021). Gene action of yield related characters under normal and drought stress conditions in brassica napus L. Pak. J. Bot, 53(6), 1979-1985. DOI: https://doi.org/10.30848/PJB2021-6(26)

Jamil, M., Lee, C. C., Rehman, S. U., Lee, D. B., Ashraf, M., & Rha, E. S. (2005). Salinity (NaCl) tolerance of Brassica species at germination and early seedling growth. Electronic Journal of Environmental, Agricultural and Food Chemistry, 4(4), 970-976.

Khadri, M., Tejera, N. A., & Lluch, C. (2007). Sodium chloride–ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environmental and experimental botany, 60(2), 211-218. DOI: https://doi.org/10.1016/j.envexpbot.2006.10.008

Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527. DOI: https://doi.org/10.1093/aob/mcg058

Meloni, D. A., Oliva, M. A., Ruiz, H. A., & Martinez, C. A. (2001). Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 24(3), 599-612. DOI: https://doi.org/10.1081/PLN-100104983

Mohammad, M., Shibli, R., Ajlouni, M., & Nimri, L. (1998). Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. Journal of plant nutrition, 21(8), 1667-1680. DOI: https://doi.org/10.1080/01904169809365512

Mohammadkhani, N., & Abbaspour, N. (2018). Absorption kinetics and efflux of chloride and sodium in the roots of four grape genotypes (Vitis L.) differing in salt tolerance. Iranian Journal of Science and Technology, Transactions A: Science, 42, 1779-1793. DOI: https://doi.org/10.1007/s40995-017-0445-0

Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell & Environment, 16(1), 15-24. DOI: https://doi.org/10.1111/j.1365-3040.1993.tb00840.x

Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), 645-663. DOI: https://doi.org/10.1111/j.1469-8137.2005.01487.x

Munns, R. (2011). Plant adaptations to salt and water stress: differences and commonalities. Advances in botanical research, 57, 1-32. DOI: https://doi.org/10.1016/B978-0-12-387692-8.00001-1

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.

Munns, R., & Sharp, R. E. (1993). Involvement of abscisic acid in controlling plant growth in soil of low water potential. Functional Plant Biology, 20(5), 425-437. DOI: https://doi.org/10.1071/PP9930425

Munns, R., Passioura, J. B., Colmer, T. D., & Byrt, C. S. (2020). Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist, 225(3), 1091-1096. DOI: https://doi.org/10.1111/nph.15862

Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of experimental botany, 57(5), 1025-1043. DOI: https://doi.org/10.1093/jxb/erj100

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

Nawaz, F., Naeem, M., Akram, A., Ashraf, M. Y., Ahmad, K. S., Zulfiqar, B., & Anwar, I. (2017). Seed priming with KNO3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.). Journal of the Science of Food and Agriculture, 97(14), 4780-4789. DOI: https://doi.org/10.1002/jsfa.8347

Naz, S., & Perveen, S. (2021). Response of wheat (Triticum aestivum L. var. galaxy-2013) to pre-sowing seed treatment with thiourea under drought stress. Pak. J. Bot, 53(4), 1209-1217. DOI: https://doi.org/10.30848/PJB2021-4(20)

Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety, 60(3), 324-349. DOI: https://doi.org/10.1016/j.ecoenv.2004.06.010

Rehman, A., Ma, H., & Ozturk, I. (2020). Decoupling the climatic and carbon dioxide emission influence to maize crop production in Pakistan. Air Quality, Atmosphere & Health, 13, 695-707. DOI: https://doi.org/10.1007/s11869-020-00825-7

Sarwar, G., Ashraf, M. Y., & Naeem, M. (2004). Genetic variability of some primitive bread wheat varieties to salt tolerance. Pakistan Journal of Botany, 35(5; SPI), 771-778.

Shaukat, I., Ihsan-ul-Haq, H., Safdar, H. M., & Arshad, R. H. (2020). Impact of climatic parameters on crop water requirements in different agro ecological zones of pakistan. Earth Sci. Pakistan, 21-24. DOI: https://doi.org/10.26480/esp.01.2020.21.24

Soussi, M., Santamaria, M., Ocana, A., & Lluch, C. (2001). Effects of salinity on protein and lipopolysaccharide pattern in a salt‐tolerant strain of Mesorhizobium ciceri. Journal of applied microbiology, 90(3), 476-481. DOI: https://doi.org/10.1046/j.1365-2672.2001.01269.x

Steel, R. G. D. (1997). Analysis of variance II: multiway classifications. Principles and procedures of statistics: A biometrical approach, 204-252.

Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics, a biometrical approach (No. Ed. 2). McGraw-Hill Kogakusha, Ltd..

Tavakkoli, E., Rengasamy, P., & McDonald, G. K. (2010). High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of experimental botany, 61(15), 4449-4459. DOI: https://doi.org/10.1093/jxb/erq251

Thomas, R. L., Sheard, R. W., & Moyer, J. R. (1967). Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion 1. Agronomy Journal 59(3), 240-243. DOI: https://doi.org/10.2134/agronj1967.00021962005900030010x

Tiwari, Y. K., & Yadav, S. K. (2019). High temperature stress tolerance in maize (Zea mays L.): Physiological and molecular mechanisms. Journal of Plant Biology, 62, 93-102. DOI: https://doi.org/10.1007/s12374-018-0350-x

Zafar, S., Hasnain, Z., Anwar, S., Perveen, S., Iqbal, N., Noman, A. L. I., & Ali, M. (2019). Influence of melatonin on antioxidant defense system and yield of wheat (Triticum aestivum L.) genotypes under saline condition. Pak. J. Bot, 51(6), 1987-1994.

Zafar, S., Hasnain, Z., Anwar, S., Perveen, S., Iqbal, N., Noman, A. L. I., & Ali, M. (2019). Influence of melatonin on antioxidant defense system and yield of wheat (Triticum aestivum L.) genotypes under saline condition. Pak. J. Bot, 51(6), 1987-1994 DOI: https://doi.org/10.30848/PJB2019-6(5)

Downloads

Published

2023-05-26

How to Cite

Ijaz, M. F., Ijaz, F., Latif, M. I., Nadeem, M., & Niaz, A. (2023). Varietal Performance of Maize (Zea mays L.) Strains Under Saline Conditions. Journal of Applied Research in Plant Sciences , 4(02), 582–592. https://doi.org/10.38211/joarps.2023.04.02.175

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)