Screening the Soybean Varietal Lines for Selecting High-Yielding and Better Agronomic Traits Producing lines

Authors

  • Khan Muhammad Zangejo Department of Botany, Shah Abdul Latif University, Khairpur, Sindh, Pakistan
  • Muzafar Hussain Sirohi Department of Botany, Shah Abdul Latif University, Khairpur, Sindh, Pakistan
  • Ghulam Raza National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan

DOI:

https://doi.org/10.38211/joarps.2024.05.238

Keywords:

Soybean, Glycine max, Screening, Yield, Sindh-Pakistan

Abstract

Soybean (Glycine max), an economically significant legume originating from East Asia, serves as a valuable source of protein and oil globally. In Pakistan, soybean is considered a non-conventional oilseed crop, with successful cultivation possible during both the spring and summer seasons. The careful selection of appropriate varieties is a primary concern for soybean growers in the country. Therefore, experiments were conducted utilizing the newly developed varietal line in the agroecological zone of Tandojam to select the most suitable and adaptable varieties. A total of forty-six newly developed varietal lines, which have not yet been released, were evaluated alongside four released varieties (Ajmeri, Faisal, Jack, and Rawal) that are already being cultivated in various regions of the country. The field experiments were carried out at the experimental area of the Nuclear Institute of Agriculture (NIA) in Tando Jam during the spring and summer seasons of 2018. Agronomic traits were recorded for each variety, and weather data were obtained from the Pakistan Meteorological Department. All agricultural practices were followed. The results indicate significant variations among the genotypes for all evaluated characteristics. Based on grain production, NIBGE32 exhibited the highest performance, achieving a notable yield of 22g during the summer season, which was 30% higher than the yield of the top-performing control variety, Faisal. Other newly developed varietal lines, namely NIBGE 18, NIBGE 8, NIBGE 45, and NIBGE 41, also demonstrated promising high-yield potential. These varieties displayed comparatively superior growth and yield outcomes. Germination percentage significantly vary in the spring and summer season (Mann-Whitney U =7925, P<0.01); whereas days to maturity, plant height, leaf area, lowest pod height, 100-grain weight, biological yield, seed weight per plant, were not significantly different in two seasons. This suggests a potential for these varietal lines to be cultivated in both seasons. This research endeavours to offer valuable insights and recommendations to farmers and policymakers, aiming to augment soybean production and advance agricultural sustainability in the region of Sindh.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adetokunbo, A. D., Esla, A. S., Esther, I. N. E. G. B. E. D. I. O. N., Glory, O. E., & Ebun, A. S. (2019). Correlation between oil content and yield of some early maturing soybean (Glycine max (L.) Merill) genotypes in Keffi, Nasarawa State. International Journal of Environment, Agriculture and Biotechnology, 4(3). DOI: https://doi.org/10.22161/ijeab/4.3.19

Akmalovna, A. C. (2022, March). BIOLOGICAL PROPERTIES OF SOYBEAN. In E Conference Zone (pp. 90-94).

Ali, A., Iqbal, Z., Safdar, M. E., Ashraf, M., Aziz, M., Asif, M., & Rehman, A. (2013). Comparison of yield performance of soybean varieties under semi-arid conditions. Journal of Animal and Plant Science, 23(3), 828-32.

Araméndiz-Tatis, H., Espitia-Camacho, M., & Cardona-Ayala, C. (2023). Variability, correlation, and path analysis in erect and prostrate cultivars of cowpea (Vigna unguiculata [L.] Walp.). Revista Colombiana de Ciencias Hortícolas, 17(1). DOI: https://doi.org/10.17584/rcch.2023v17i1.15508

Asad, S. A., Wahid, M. A., Farina, S., Ali, R., & Muhammad, F. (2020). Soybean production in Pakistan: experiences, challenges and prospects. International Journal of Agriculture and Biology, 24(4), 995-1005.

Asefa, G. (2019). The role of harvest index in improving crop productivity. Journal of Natural Science Research, 9(6), 24-28.

Badiaraja, P. H., Zubaidah, S., & Kuswantoro, H. (2021, May). Population structure of F3 soybean lines based on agronomic characters. In AIP Conference Proceedings (Vol. 2353, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0052843

Choi, Y. M., Yoon, H., Shin, M. J., Lee, Y., Hur, O. S., Lee, B. C., ... & Desta, K. T. (2021). Metabolite contents and antioxidant activities of soybean (Glycine max (L.) Merrill) seeds of different seed coat colors. Antioxidants, 10(8), 1210. DOI: https://doi.org/10.3390/antiox10081210

Sá, L. G. D., Albuquerque, C. J. B., Valadares, N. R., Brito, O. G., Fernandes, A. C. G., & Azevedo, A. M. D. (2022). Area estimation of soybean leaves of different shapes with artificial neural networks. Acta Scientiarum. Agronomy, 44, e54787. DOI: https://doi.org/10.4025/actasciagron.v44i1.54787

Desta, K. T., Hur, O. S., Lee, S., Yoon, H., Shin, M. J., Yi, J., & Choi, Y. M. (2022). Origin and seed coat color differently affect the concentrations of metabolites and antioxidant activities in soybean (Glycine max (L.) Merrill) seeds. Food chemistry, 381, 132249.FAO. (2020). Foog and Agricultural Organization. FAO Statistics. DOI: https://doi.org/10.1016/j.foodchem.2022.132249

Gawęda, D., Haliniarz, M., Bronowicka-Mielniczuk, U., & Łukasz, J. (2020). Weed infestation and health of the soybean crop depending on cropping system and tillage system. Agriculture, 10(6), 208. DOI: https://doi.org/10.3390/agriculture10060208

Hotea, I., Dragomirescu, M., Colibar, O., Tirziu, E., Herman, V., Berbecea, A., & Radulov, I. (2021, November). The Influence of Climate Conditions and Meteorological Factors on the Nutritional Value of Wheat (Triticum Aestivum L.) Used for Human and Animals Nutrition, in Romania. In IOP Conference Series: Earth and Environmental Science (Vol. 906, No. 1, p. 012019). IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/906/1/012019

Hou, Z., Fang, C., Liu, B., Yang, H., & Kong, F. (2023). Origin, variation, and selection of natural alleles controlling flowering and adaptation in wild and cultivated soybean. Molecular Breeding, 43(5), 36. DOI: https://doi.org/10.1007/s11032-023-01382-4

Jo, H., Lee, J. Y., Cho, H., Choi, H. J., Son, C. K., Bae, J. S., .. & Lee, J. D. (2021). Genetic diversity of soybeans (Glycine max (L.) merr.) with black seed coats and green cotyledons in Korean germplasm. Agronomy, 11(3), 581. DOI: https://doi.org/10.3390/agronomy11030581

Junior, AAB, de Oliveira Procópio, S., Costa, JM, Kosinski, CL, Panison, F., Debiasi, H., & Franchini, JC (2015). Reduced spacing and cross-planting associated with different plant densities in soybeans. Semina: Agricultural Sciences , 36 (5), 2977-2986. DOI: https://doi.org/10.5433/1679-0359.2015v36n5p2977

Kafer, J. M., Molinari, M. D., Henning, F. A., Koltun, A., Marques, V. V., Marin, S. R., ... & Mertz-Henning, L. M. (2023). Transcriptional Profile of Soybean Seeds with Contrasting Seed Coat Color. Plants, 12(7), 1555. DOI: https://doi.org/10.3390/plants12071555

Kawasaki, Y., Yamazaki, R., & Katayama, K. (2018). Effects of late sowing on soybean yields and yield components in southwestern Japan. Plant Production Science, 21(4), 339-348. DOI: https://doi.org/10.1080/1343943X.2018.1511376

Kezar, S., Ballagh, A., Kankarla, V., Sharma, S., Sharry, R., & Lofton, J. (2023). Response of Soybean Yield and Certain Growth Parameters to Simulated Reproductive Structure Removal. Agronomy, 13(3), 927. DOI: https://doi.org/10.3390/agronomy13030927

Khurshid, H., Baig, D., Jan, S. A., Arshad, M., & Khan, M. A. (2017). Miracle crop: the present and future of soybean production in Pakistan. MOJ Biol Med, 2(1), 189-191. DOI: https://doi.org/10.15406/mojbm.2017.02.00042

Krisnawati, A., & Adie, M. (2021). Agronomic performance and pod shattering resistance of soybean genotypes with various pod and seed colors. Biodiversitas Journal of Biological Diversity, 22(1). DOI: https://doi.org/10.13057/biodiv/d220157

Kuzbakova, M., Khassanova, G., Oshergina, I., Ten, E., Jatayev, S., Yerzhebayeva, R., ... & Shavrukov, Y. (2022). Height to first pod: A review of genetic and breeding approaches to improve combine harvesting in legume crops. Frontiers in Plant Science, 13, 948099. DOI: https://doi.org/10.3389/fpls.2022.948099

Li, L., Cui, S., Dang, P., Yang, X., Wei, X., Chen, K., ... & Chen, C. Y. (2022). GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated Peanut (Arachis hypogaea L.). BMC genomics, 23(1), 403. DOI: https://doi.org/10.1186/s12864-022-08640-3

Lin, X., Liu, B., Weller, J. L., Abe, J., & Kong, F. (2021). Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 63(6), 981-994. DOI: https://doi.org/10.1111/jipb.13021

Madanzi, T., Chiduza, C., & Richardson-Kageler, S. J. (2010). Effects of planting method and seed size on stand establishment of soybean [Glycine max (L.) Merrill cv. Solitaire]. Soil and Tillage Research, 106(2), 171-176. DOI: https://doi.org/10.1016/j.still.2009.12.003

Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Gupta, N., Sharma, A., ... & Tiwari, S. (2022). Characterization of soybean genotypes on the basis of yield attributing traits and SSR molecular markers. book: Innovations in Science and Technology. 2022b, 3, 87-106. DOI: https://doi.org/10.9734/bpi/ist/v3/2471C

Pedersen, P., & Lauer, J. G. (2004). Response of soybean yield components to management system and planting date. Agronomy Journal, 96(5), 1372-1381. DOI: https://doi.org/10.2134/agronj2004.1372

de Micheaux, P. L., Drouilhet, R., & Liquet, B. (2013). The R software. Fundamentals of Programming and Statistical Analysis, 978-1. DOI: https://doi.org/10.1007/978-1-4614-9020-3_8

Rani, R., Arif, M., Rahman, S. U., Hammad, M., Mukhtar, Z., Rizwan, M., .& Raza, G. (2023). Field Screening of Diverse Soybean Germplasm to Characterize Their Adaptability under Long-Day Condition. Agronomy, 13(9), 2317. DOI: https://doi.org/10.3390/agronomy13092317

Saha, B., & Islam, M. M. (2022). Assessment of yield performance and related attributes of selected soybean (Glycine max L. Merrill) genotypes in southwest coastal region of Bangladesh. Bulgarian Journal of Agricultural Science, 28(1).

Setiawan, A. N., Budiastuti, S., & Purwanto, E. (2023, April). Physio-Morphology Of Soybean In Various Population Proportions Of Intercropping With Corn. In IOP Conference Series: Earth and Environmental Science (Vol. 1165, No. 1, p. 012027). IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/1165/1/012027

Sharma, P., Sharma, N., & Deswal, R. (2005). The molecular biology of the low‐temperature response in plants. Bioessays, 27(10), 1048-1059. DOI: https://doi.org/10.1002/bies.20307

Silver, W. L., Perez, T., Mayer, A., & Jones, A. R. (2021). The role of soil in the contribution of food and feed. Philosophical Transactions of the Royal Society B, 376(1834), 20200181. DOI: https://doi.org/10.1098/rstb.2020.0181

Staniak, M., Szpunar-Krok, E., & Kocira, A. (2023). Responses of soybean to selected abiotic stresses—Photoperiod, temperature and water. Agriculture, 13(1), 146. DOI: https://doi.org/10.3390/agriculture13010146

Szczerba, A., Płażek, A., Pastuszak, J., Kopeć, P., Hornyák, M., & Dubert, F. (2021). Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max L.) cultivars. Agronomy, 11(4), 800. DOI: https://doi.org/10.3390/agronomy11040800

Teobaldelli, M., Rouphael, Y., Fascella, G., Cristofori, V., Rivera, C. M., & Basile, B. (2019). Developing an accurate and fast non-destructive single leaf area model for loquat (Eriobotrya japonica Lindl) cultivars. Plants, 8(7), 230. DOI: https://doi.org/10.3390/plants8070230

Tujuba, C. (2020). Effects of seed source and storage duration on seed quality, yield and yield related traits of soybean [glycine max (l) merrill] varieties at pawe, northwestern Ethiopia (Doctoral dissertation, Haramaya University).

Weerasekara, I., Sinniah, U. R., Namasivayam, P., Nazli, M. H., Abdurahman, S. A., & Ghazali, M. N. (2021). The influence of seed production environment on seed development and quality of Soybean (Glycine max (L.) Merrill). Agronomy, 11(7), 1430. DOI: https://doi.org/10.3390/agronomy11071430

Wei, M. C. F., & Molin, J. P. (2020). Soybean yield estimation and its components: A linear regression approach. Agriculture, 10(8), 348. DOI: https://doi.org/10.3390/agriculture10080348

Yamaguchi-Shinozaki, K., & Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 6(2), 251-264. DOI: https://doi.org/10.1105/tpc.6.2.251

Zhang, J., Song, Q., Cregan, P. B., Nelson, R. L., Wang, X., Wu, J., & Jiang, G. L. (2015). Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC genomics, 16, 1-11. DOI: https://doi.org/10.1186/s12864-015-1441-4

Yan, C. Y., Yi, W. T., Xiong, J., & Ma, J. (2018). IOP conference series: earth and environmental science. IOP Publishing, 128(1), 012086 DOI: https://doi.org/10.1088/1755-1315/128/1/012041

Osnato, M., Cota, I., Nebhnani, P., Cereijo, U., & Pelaz, S. (2022). Photoperiod control of plant growth: Flowering time genes beyond flowering. Frontiers in plant science, 12, 805635. DOI: https://doi.org/10.3389/fpls.2021.805635

Statistics, I. S. (2011). IBM SPSS Statistics (v. 20). IBM Corporation, New York.

Downloads

Published

2024-01-06

How to Cite

Zangejo, K. M., Sirohi, M. H., & Ghulam Raza. (2024). Screening the Soybean Varietal Lines for Selecting High-Yielding and Better Agronomic Traits Producing lines. Journal of Applied Research in Plant Sciences , 5(01), 86–98. https://doi.org/10.38211/joarps.2024.05.238

Most read articles by the same author(s)