Antibacterial Application of Copper Nanoparticles Biosynthesized by Water Caltrop Pod.
DOI:
https://doi.org/10.38211/joarps.2024.05.282Keywords:
Characterization, Concentration, Escherichia coli, Penta hydrated copper, sulphate, Staphylococcus aureusAbstract
This study investigates the utilization of water caltrop pod, an abundant agricultural waste product, as a green extract for the optimized biosynthesis of copper nanoparticles (CuNPs). To comprehensively characterize the water caltrop pod and the biosynthesized CuNPs by water caltrop pod a sophisticated techniques were employed, including U.V-Vis spectrophotometry for probing their preliminary analysis of copper nanoparticles, FT-IR spectroscopy for elucidating the functional groups present in water caltrop pod, Scanning Electron Microscopy (SEM) for visualizing the morphology, Energy Dispersive X-ray (EDX) for elemental analysis while Energy-Dispersive X-ray (XRD) to determine crystalline structure of copper nanoparticles. Furthermore, the antibacterial application of these biogenic copper nanoparticles was explored. The antibacterial activity of copper nanoparticles (CuNPs) was investigated against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, revealing their efficacy in combating microbial growth employing a Well Diffusion method. Copper nanoparticles showed greater antibacterial treatment against Gram (+ve) bacteria i.e. Staphylococcus aureus as compared to Gram (-ve) bacteria i.e. Escherichia coli. This research paves the way for the sustainable production of bio-functional CuNPs from waste biomass, offering promising application in antibacterial therapies.
Downloads
References
Ahmed, S.S.T., Fahim, J.R., Youssif, K.A., Amin, M.N., Abdel-Aziz, H.S.S., Brachmann,
A.O., Jorn Piel, A.U.R., Hamed, A.N.E. (2021). Cytotoxic potential of Allium sativum L. roots and their green synthesized nanoparticles supported with metabolomics and molecular docking analysis. South African Journal of Botany, 142, 131-139. http://doi.org/10.1016/j.sajb.2021.06.020. DOI: https://doi.org/10.1016/j.sajb.2021.06.020
Akula, V.V., & Philip, L. (2023). “Removal of harmful oxyanions from contaminated
water by Donnan dialysis” Journal of Water Process Engineering, 55, 104085. http://doi.org/10.1016/j.jwpe.2023.104085. DOI: https://doi.org/10.1016/j.jwpe.2023.104085
Ameen, F., Alown, F., Al-Owaidi, M.F., Sivapriya, T.,
Ramirez-Coronel, A.A., Khat, M., Akhavan-Sigari,R. (2023). African plant- mediated biosynthesis of silver nanoparticles and evalution of their toxicity, and antimicrobial activities. South African Journal of Botany, 156, 213-222. http://doi.org/10.1016/j.sajb.2023.03.010. DOI: https://doi.org/10.1016/j.sajb.2023.03.010
Augilar, N.M., Arteaga-Cardona, F., Estevez, J.O., Silva-Gonzalez, N.R., J.C. Benitez-
Serrano, J.C., Salazar-Kuri, U. (2018). Controlled biosynthesis of silver nanoparticles using sugar industry waste, and its antimicrobial activity. Journal of Environmental Chemical Engineering, 6(5) 6275-6281. http://doi.org/10.1016/j.jece.2018.09.056. DOI: https://doi.org/10.1016/j.jece.2018.09.056
Banerjee, A., Roy, R.K., Sarkar, S., Lopez, J.L., Vuree, S., Bandopadhyay, R., (2024).
Synthesis of hot spring origin bacterial cell wall polysaccharide-based copper nanoparticles with antibacterial property. Electronic Journal of Biotechnology, 68, 11-19. http://doi.org/10.1016/j.ejbt.2023.11.005. DOI: https://doi.org/10.1016/j.ejbt.2023.11.005
Banerjee, A., Qi, J., Gogoi, R., Wong, J., Mitragotri, S. (2016). Role of Nanoparticle
size, shape and surface chemistry in oral drug delivery. Journal of Controlled Release, 238, 176-185. http://doi.org/10.1016/j.jconrel.2016.07.051. DOI: https://doi.org/10.1016/j.jconrel.2016.07.051
Brar, K.K., Mogdouli, S., Othmani, A., Ghanai, J., Narisetty, V., Sidhu, R., Binod, P.,
Pugazhendhi, A., Awasthi, M.K., Pandey, A. (2022). Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Journal of Environmental Research, 207,112202. http://doi.org/10.1016/j.envres.2021.112202. DOI: https://doi.org/10.1016/j.envres.2021.112202
Dobrucka, R., and Dtugaszewska, J. (2016). Biosynthesis and antibacterial activity of
ZnO nanoparticles using Trifolium Pratenese flower extract. Saudi Journal of Biological Sciences, 23(4), 517-523. http://doi.org/10.1016/j.sjbs.2015.05.016. DOI: https://doi.org/10.1016/j.sjbs.2015.05.016
El-Shamy, O.A.A., & Deyab, M.A. (2023). Eco-friendly biosynthesis of silver
nanoparticles and their improvement of anti-corrosion performance in epoxy coatings. Journal of Molecular Liquids, 376, 121488. http://doi.org/10.1016/j.molliq.2023.121488. DOI: https://doi.org/10.1016/j.molliq.2023.121488
Gotowienke, H., Livraghi, S., Lisowski, W., Kimczzuk, T., Trykowski, G., Pawlyta, M.,
Zaleska-Medynska, A., Gotabiewska, A. (2024). From Janus nanoparticles to multi-headed structure-photocatalytical H2 evolution. International Journal of Hydreogen Energy, 59, 808-824. http://doi.org/10.1016/j.ijhydene.2024.01.336. DOI: https://doi.org/10.1016/j.ijhydene.2024.01.336
Halfadji, A., Naous, M., Rajendrachari, S., Ceylan, Y., Ceylan, K B., Shekhar, R, P.V.
(2024). Effective investigation of electro-catalytic, photocatalytic, and antimicrobial properties of porous CuO nanoparticles green synthesized using leaves of Cupressocyparis leylandii. Journal of Molecular Structure, 1301, 137318. http://doi.org/10.1016/j.molstruc.2023.137318. DOI: https://doi.org/10.1016/j.molstruc.2023.137318
Hanachi, P., Gharari, Z., Sadeghinia, H., Walker, T.R. (2022). Synthesis of bioactive
silver nanoparticles with-friendly processes using Harleum persicum stem extract and evaluation of their antioxidant, antibacterial, anticancer and apoptotic potential. Journal of Molecular Structure, 1265, 133325. http://doi.org/10.1016/j.molstruc.2022.133325. DOI: https://doi.org/10.1016/j.molstruc.2022.133325
Harini H.V, Nagaswarupa, H.P., Naik, R., Ravikumar, C.R. (2023). Green mediated
sol-gel auto combustion and solution combustion synthesis of calcium magnesium aluminate (CMA) nanoparticles: Modified carbon paste and nickel mesh electrode for supercapacitor and sensor applications. Journal of the Indian Chemical Society, 100(12), 101113. https://doi.org/10.1016/j.jics.2023.101113. DOI: https://doi.org/10.1016/j.jics.2023.101113
Hatami, M., & Ghorbanpour, M. (2024). Metal and metal oxide nanoparticles-induced
reactive oxygen species: Phytotoxicity and detoxification mechanisms in plant cell. Journal of Plant Physiology and Biochemistry, 213, 108847. http://doi.org/10.1016/j.plaphy.2024.108847. DOI: https://doi.org/10.1016/j.plaphy.2024.108847
Hussein, A.S., Abeed, A. H.A., Usman, A.R.A., Abou-Zaid, E.A.A., (2024).
Conventional vs. nanomicronutrients as foiler fertilization for enhancing the quality and nutritional status of pomegranate fruits. Journal of the Saudi Society of Agricultural Sciences, 23(2), 112-122. http://doi.org/10.1016/j.jssas.2023.09.008. DOI: https://doi.org/10.1016/j.jssas.2023.09.008
Is, F., Hidayat, H., Nugroho, B.H., Husein, S. (2020). Ultrasound-assisted biosynthesis
of silver and gold nanoparticles using Clitoria ternatea flower. South African Journal of Chemical Engineering, 34, 97-106. http://doi.org/10.1016/j.sajce.2020.06.007. DOI: https://doi.org/10.1016/j.sajce.2020.06.007
Kaushal, P., Maity, D., Awasthi, R. (2024). Nano-green: Harnessing the potential for
sustainable antimicrobial metallic nanoparticles. Journal of Drug Delivery Science and Technology, volume 94, 105488. http://doi.org/10.1016/j.jddst.2024.105488. DOI: https://doi.org/10.1016/j.jddst.2024.105488
Khoiriah, K., & Putri, R.A., (2024). Biosynthesis of titanium dioxide nanoparticles using
peel extract of Parkia speciosa for methyl orange degradation. South African Journal of Botany, 170, 120-129. http://doi.org/10.1016/j.sajb.2024.05.021. DOI: https://doi.org/10.1016/j.sajb.2024.05.021
Li, X., Qu, S., Ouyang, Q., Qin, F., Guo, J., Qin, M., Zhang, J., (2024).
A multifunctional composite nanoparticles with antibacterial activities, anti-inflammatory, and angiogenesis for diabetics wound healing. International Journal of Biological Macromolecules, 260(2), 129531. http://doi.org/10.1016/j.ijbiomac.2024.129531. DOI: https://doi.org/10.1016/j.ijbiomac.2024.129531
Liu, Y., Chang, Y., Chen, H. (2018). Silver nanoparticles biosynthesis by using phenolic
acids in rice husk extract as reducing agents and dispersants. Journal of Food and Drug Analysis, 26(2), 649-656. http://doi.org/10.1016/j.jfda.2017.07.005. DOI: https://doi.org/10.1016/j.jfda.2017.07.005
Maitra, B., Khatun, M.H., Ahmed, A., Ahmed, N., Kadri, H.J., Rasel, A., M. Z.U.R.,
Saha, B.K., Hakim, M., Kabir, S.R., Habib, M. R., Rabbi, A. (2023). Biosynthesis of Bixa Orellana seed extract mediated silver nanoparticles with moderate antioxidant, antibacterial and antiproliferative activity. Arabian Journal of Chemistry, 16(5), 104675. http://doi.org/10.1016/j.arabjc.2023.104675. DOI: https://doi.org/10.1016/j.arabjc.2023.104675
Nayal, R., Mejjo, D., Abajy, M.A. (2024). Anti inflammatory Properties of green
synthesized metal and metal oxide nanoparticles: A review article. European Journal of Medical Chemistry Reports, 11, 100169. https://doi.org/10.1016/j.ejmcr.2024.100169. DOI: https://doi.org/10.1016/j.ejmcr.2024.100169
Pourmadadi, M., Holghoomi, R., Shamsabadipour, A., Maleki-baladi, R., Rahdar, A.,
Pandey, S. (2024). Copper nanoparticles from chemical, physical and green synthesis to medicinal application: A review. Journal of Plant Nano Biology, 8, 100070. http://doi.org/10.1016/j.plana.2024.100070. DOI: https://doi.org/10.1016/j.plana.2024.100070
Sarkar, D., Ghosh, A.K., Khan, A.H., Das, P.K. (2023). Organic nanoparticles with
tuneable AIE derived from amino acids appended naphthalenediimide based amphiphiles. Journal of Molecular Liquids, 382, 121824. http://doi.org/10.1016/j.molliq.2023.121824. DOI: https://doi.org/10.1016/j.molliq.2023.121824
Singhal, M., Loveleen, L., Manchanda, R., Syed, A., Bakhali, A.H., Wong, L.S., Nimesh,
S., Gupta, N. (2024). Design, synthesis and optimization of silver nanoparticles using Azadirachta indica bark extract and its antibacterial application. Journal of Agriculture and Food Research, 16, 101088. http://doi.org/10.1016/j.jafr.2024.101088. DOI: https://doi.org/10.1016/j.jafr.2024.101088
Thakar, M.A., Jha, S.S., Phasinam, K., Manne, R., Qureshi, Y., Babu, V.V.H. (2022). X-
ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea. Material Today: Proceedigs, 51(1), 319-324. http://doi.org/10.1016/j.matpr.2021.05.410. DOI: https://doi.org/10.1016/j.matpr.2021.05.410
Uribe-Lopez, M.C., Hidalgo-Lopaz, M.C., Lopaz-Gonezalez, R., Frias-Marquez, D.M.,
Nunez-Nogueira, G., Hernandez-Castillo, D., Alvarez-Lemus, M.A. (2021). Photocatalytic activity of ZnO nanoparticles and the role of their physical and chemical properties. Journal of Photochemistry and photobiology A: Chemistry, 404, 112866. http://doi.org/10.1016/j.jphotochem.2020.112866. DOI: https://doi.org/10.1016/j.jphotochem.2020.112866
Vilardi, G., Verdone, N., Bubbico, R., (2021). Combined production of metallic-iron
nanoparticles: energy and energy analysis of two alternative processes using Hydrazine and NaBH4 as reducing agents. Journal of the Taiwan Institute of Chemical Engineers, 118, 97-111. https://doi.org/10.1016/j.jtice.2020.11.020. DOI: https://doi.org/10.1016/j.jtice.2020.11.020
Waghchaure, R.H., & Adole, V.A. (2023). Biosynthesis of metal and metal oxide
nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. Journal of the Indian Chemical Society, 100(5), 100987. http://doi.org/10.1016/j.jics.2023.100987. DOI: https://doi.org/10.1016/j.jics.2023.100987
Wang, C., Chen, X., Shen, Z., Ji, L., Liu, Y., Ding, Y., Yao, H., Zhang, H., Niu, J.,
Cao, H. (2024). Three-Dimensional dendritic biosynthetic copper oxide nanoparticles: A novel approach for enhanced leaf deposition and retension to reduce environmental impact. Chemical Engineering Journal, 489, 151187. https://doi.org/10.1016/j.cej.2024.151187. DOI: https://doi.org/10.1016/j.cej.2024.151187
Wang, S., Chen, D., Hong, Q., Gui, Y., Cao, Y., Ren, G., Liang, Z. (2023).
Surface functionalized of metal and metal oxide nanoparticles for dispersion and tribological applications-A review. Journal of Molecular Liquids, 389, 122821. https://doi.org/10.1016/j.molliq.2023.122821. DOI: https://doi.org/10.1016/j.molliq.2023.122821
Zawadka, K., Felczak, A., Nowak, M., Kowalczyk, A., Piwonski, I., Lisowska, K.
(2021). Antimicrobial activity and toxicological risk assessment of silver nanoparticles synthesized using an eco-friendly method with Gloeophyllum striatum. Journal of Hazardous Materials, 418, 126316. http://doi.org/10.1016/j.jhazmat.2021.126316. DOI: https://doi.org/10.1016/j.jhazmat.2021.126316
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Farooque Azam Khatri, Jamil-ur-Rehman, Imam Bakhhsh, Dr. Ghulam Zuhra, Muhammad Imran, Muhammad Ali Bhatti, Fayaz Ahmed, Muhammad Farooque
This work is licensed under a Creative Commons Attribution 4.0 International License.