Purification and Characterization of Alkaline Protease Isolated from Cotton (Gossypium hirsutum) Seeds
DOI:
https://doi.org/10.38211/joarps.2024.05.201Keywords:
Cotton seed, Protease, Purification, Alkaline, CysteineAbstract
Proteases are widely utilized both in physiological and commercial fields such as medicine, food, detergent, and leather. Plant-originated proteases play a significant role in several biomedical fields due to their easy accessibility and activity. Pakistan is an agro-based country and can be an ideal place for the isolation of industrially important proteases from plant sources such as cotton, which is the main crop and frequently available and low cost. Purification of protease was carried out by fractionation with two-fold acetone, ethanol, methanol and various concentrations (40-80%) of ammonium sulphate. The precipitates formed were collected after centrifugation and dialyzed for 24 hours against universal buffer pH 7.0 and was centrifuged in a cooled refrigerated. The dialyzed sample was loaded on Sephadex G–100 gel column. The fractions of the samples were collected and their absorbance of protein was monitored at 280 nm. The homogeneity of the purified enzyme was checked by SDS gel electrophoresis The purified protease enzyme has optimum activity at 30°C and pH 8.0 when casein was used as substrate. The Km and Vmax values of purified cotton seed's alkaline protease activity was recorded as 0.03M and 17 μmol/minute respectively. Protease activity was increased by the addition of cysteine but inhibited by Iodoacetic acid and β-Mercaptoethanol and decreased with some metal ions. These characteristics of the purified enzyme allowed classifying it as a cysteine protease. In conclusion, this study suggests that the alkaline protease enzyme is the best choice for commercial use
Downloads
References
Abbas, F., & Abdelrahman, A. (2021). Isolation, Purification and Partial Characterization of a Serine-Like Protease from Solanum dubium Seeds. Biochem Mol Biol, 7(3), 12.
Abd-ElKhalek, A. M., Seoudi, D. M., Ibrahim, O. A., Abd-Rabou, N. S., & Abd ElAzeem, E. M. (2020). Extraction, partial purification, characteristics, and antimicrobial activity of plant protease from Moringa Oleifera leaves. Journal of Applied Biotechnology Reports, 7(4), 243-250.
Abdulaal, W. H. J. B. b. (2018). Purification and characterization of cysteine protease from miswak Salvadora persica. 19(1), 1-6. DOI: https://doi.org/10.1186/s12858-018-0100-1
Akcan, N., & Uyar, F. (2011). Production of extracellular alkaline protease from Bacillus subtilis RSKK96 with solid state fermentation. EurAsian Journal of BioSciences, 5. DOI: https://doi.org/10.5053/ejobios.2011.5.0.8
Alhashem, Y. N., Farid, A., Al Mohaini, M., Muzammal, M., Khan, M. H., Dadrasnia, A., . . . Almusalami, E. M. (2022). Protein Isolation and Separation Techniques of Pasteurella multocidavia One-and Two-Dimensional Gel Electrophoresis. Int. J. Cur. Res. Rev, 14(12), 1-8. DOI: https://doi.org/10.31782/IJCRR.2022.141208
Ali, A., & Dahot, M. (2009). Characterization of crude alkaline protease of soybean (Glycine max) seeds. Sindh University Research Journal-SURJ (Science Series), 41(2).
Ali, A. J. P. J. o. A., & Chemistry, E. (2022). Evaluation of Cotton Seeds as Environmentally Liable Source for Neutral Protease. 23(2), 215-224. DOI: https://doi.org/10.21743/pjaec/2022.12.04
Antao, C. M., & Malcata, F. X. (2005). Plant serine proteases: biochemical, physiological and molecular features. Plant Physiol Biochem, 43(7), 637-650. DOI: https://doi.org/10.1016/j.plaphy.2005.05.001
Anupama, Marimuthu, M., Sundaram, U., & Gurumoorthi, P. (2013). Optimization, Isolation and Partial Characterization of Proteases from Underutilized and Common Food Legumes. International research journal of pharmacy, 4, 99-106. DOI: https://doi.org/10.7897/2230-8407.04722
Ashouri, S., Abad, R. F. P., Zihnioglu, F., & Kocadag, E. (2017). Extraction and purification of protease inhibitor (s) from seeds of Helianthus annuus with effects on Leptinotarsa decemlineata digestive cysteine protease. Biocatalysis and Agricultural Biotechnology, 9, 113-119. DOI: https://doi.org/10.1016/j.bcab.2016.12.005
Atrooz, O. M., & Alomari, F. N. (2020). Determination of the activity and kinetics parameters of proteases in the crude plant extracts of Mentha piperita L. and Thymus capitatus L. Journal of Applied Biology and Biotechnology, 8(6), 3-7.
Badgujar, S. B. (2014). Evaluation of hemostatic activity of latex from three Euphorbiaceae species. Journal of ethnopharmacology, 151 1, 733-739. DOI: https://doi.org/10.1016/j.jep.2013.11.044
Baidamshina, D. R., Koroleva, V. A., Olshannikova, S. S., Trizna, E. Y., Bogachev, M. I., Artyukhov, V. G., . . . Kayumov, A. R. (2021). Biochemical properties and anti-biofilm activity of chitosan-immobilized papain. Marine Drugs, 19(4), 197.
Baidamshina, D. R., Koroleva, V. A., Olshannikova, S. S., Trizna, E. Y., Bogachev, M. I., Artyukhov, V. G., . . . Kayumov, A. R. (2021). Biochemical Properties and Anti-Biofilm Activity of Chitosan-Immobilized Papain. Marine Drugs, 19. DOI: https://doi.org/10.3390/md19040197
Banerjee, R., & Bhattacharyya, B. C. (1992). Purification and characterization of protease from a newly isolated Rhizopus oryzae. Bioprocess Engineering, 7(8), 369-374. doi:10.1007/BF00369493 DOI: https://doi.org/10.1007/BF00369493
Banik, S., Biswas, S., & Karmakar, S. (2018). Extraction, purification, and activity of protease from the leaves of Moringa oleifera. F1000Research, 7. DOI: https://doi.org/10.12688/f1000research.15642.1
Chanda, I., Basu, S. K., Dutta, S. K., & Das, S. R. C. (2011). A Protease Isolated from the Latex of Plumeria rubra Linn (Apocynaceae) 1: Purification and Characterization. Tropical journal of pharmaceutical research, 10, 705-711. DOI: https://doi.org/10.4314/tjpr.v10i6.2
da Silva, A. V., do Nascimento, J. M., Rodrigues, C. H., Nascimento, D. C. S., Costa, R. M. P. B., Marques, D. d. A. V., . . . Converti, A. (2020). Partial purification of fibrinolytic and fibrinogenolytic protease from Gliricidia sepium seeds by aqueous two-phase system. Biocatalysis and Agricultural Biotechnology, 27, 101669.
Davis, B. (1964). Method and application tohuman serum protein. Ann. NY Acad. Sci., 121, 404-427. DOI: https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
Devi, B. G., & HemaLatha, K. (2014). Isolation, partial purification and characterization of alkaline serine protease from seeds of Cucumis melo var agrestis. International Journal of Research in Engineering and Technology, 3(6), 88-95. DOI: https://doi.org/10.15623/ijret.2014.0306016
Doi, O., & Nojima, S. (1975). Lysophospholipase of Escherichia coli. J Biol Chem, 250(13), 5208-5214. DOI: https://doi.org/10.1016/S0021-9258(19)41297-0
Gangaraju, S., Manjappa, B., Subbaiah, G. K., Kempaiah, K., Shashidharamurthy, R., Plow, J. H., . . . Sannaningaiah, D. (2015). Jackfruit (Artocarpus heterophyllus) seed extract exhibits fibrino(geno)lytic activity. Pharmacognosy Journal, 7, 171-177. DOI: https://doi.org/10.5530/pj.2015.3.5
Gonçalves, R. N., Gozzini Barbosa, S. D., & Silva-López, R. E. d. (2016). Proteases from Canavalia ensiformis: active and thermostable enzymes with potential of application in biotechnology. Biotechnology Research International, 2016. DOI: https://doi.org/10.1155/2016/3427098
Holme, D., & Peck, H. In Analytical Biochemistry (1983): Published by Longman Group Ltd., England.
Holme, D. J., & Peck, H. (1983). Analytical Biochemistry: Longman.
Iqbal, A., Hakim, A., Hossain, M. S., Rahman, M. R., Islam, K., Azim, M. F., . . . Azad, A. K. (2018). Partial purification and characterization of serine protease produced through fermentation of organic municipal solid wastes by Serratia marcescens A3 and Pseudomonas putida A2. Journal of Genetic Engineering & Biotechnology, 16, 29 - 37. DOI: https://doi.org/10.1016/j.jgeb.2017.10.011
Jinka, R., Ramakrishna, V., Rao, S. K., & Rao, R. P. (2009). Purification and characterization of cysteine protease from germinating cotyledons of horse gram. BMC Biochem, 10, 28. doi:10.1186/1471-2091-10-28 DOI: https://doi.org/10.1186/1471-2091-10-28
Kavoosi, G., & Ardestani, S. K. (2012). Gel electrophoresis of protein–from basic science to practical approach. Gel Electrophoresis–Principles and Basics, 69. DOI: https://doi.org/10.5772/38062
Khan, M. B., Khan, H.-u., Shah, M. U., & Khan, S. (2016). Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis. Natural Product Research, 30, 935 - 940. DOI: https://doi.org/10.1080/14786419.2015.1079909
Kim, M., Si, J.-B., Reddy, L. V., & Wee, Y.-J. (2016). Enhanced production of extracellular proteolytic enzyme excreted by a newly isolated Bacillus subtilis FBL-1 through combined utilization of statistical designs and response surface methodology. Rsc Advances, 6(56), 51270-51278. DOI: https://doi.org/10.1039/C6RA07724B
Kumar, V., Anjana, P., & Sharma, S. (2019). Latest Overview of Proteases: A Review. Asian J. Adv. Basic Sci, 7(2), 20-28. DOI: https://doi.org/10.33980/ajabs.2019.v07i02.004
Lowry, O., Rosebrough, N., Farr, A., & Randall, R. J. B. C. (1951). of these enzymes than MQ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 193, 265-275.
Maqtari, M. A. A., Naji, K. M., & Ali, L. K. Extraction and Immobilization of Proteolytic Enzymes from Local Yemeni Bean Seeds (Dolichos Lablab L.).
Matagne, A., Bolle, L., El Mahyaoui, R., Baeyens-Volant, D., & Azarkan, M. (2017). The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms. Phytochemistry, 138, 29-51. DOI: https://doi.org/10.1016/j.phytochem.2017.02.019
Matkawala, F., Nighojkar, S., Kumar, A., & Nighojkar, A. (2019). A novel thiol-dependent serine protease from Neocosmospora sp. N1. Heliyon, 5. DOI: https://doi.org/10.1016/j.heliyon.2019.e02246
Miyazaki-Katamura, S., Yoneta-Wada, M., Kozuka, M., Sakaue, T., Yamane, T., Suzuki, J., . . . Ohkubo, I. (2019). Purification and Biochemical Characterization of Cysteine Protease from Baby Kiwi (Actinidia arguta). The Open Biochemistry Journal. DOI: https://doi.org/10.2174/1874091X01913010054
Mnif, I. H., Siala, R., Nasri, R., Mhamdi, S., Nasri, M., & Kamoun, A. S. (2014). A Cysteine Protease Isolated from the Latex of Ficus microcarpa: Purification and Biochemical Characterization. Applied biochemistry and biotechnology, 175, 1732-1744. DOI: https://doi.org/10.1007/s12010-014-1376-2
Moo-Young, M. (2011). Comprehensive Biotechnology: Elsevier Science.
Ogbonna, A., & Okolo, B. (2005). Purification and some properties of a metalloprotease from sorghum malt variety KSV8-1. World Journal of Microbiology and Biotechnology, 21(6), 1051-1056. DOI: https://doi.org/10.1007/s11274-004-8026-8
Paul, B., & Gowda, L. R. (2000). Purification and characterization of a polyphenol oxidase from the seeds of field bean (Dolichos lablab). J Agric Food Chem, 48(9), 3839-3846. doi:10.1021/jf000296s DOI: https://doi.org/10.1021/jf000296s
Rawski, R. I., Sanecki, P. T., Dżugan, M., & Kijowska, K. (2018). The evidence of proteases in sprouted seeds and their application for animal protein digestion. Chemical Papers, 72(5), 1213-1221. DOI: https://doi.org/10.1007/s11696-017-0341-2
Reagent, F. P. (1951). PROTEIN MEASUREMENT WITH THE. J. biol. Chem, 193, 265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Sarkar, G., & Suthindhiran, K. (2020). Extraction and characterization of alkaline protease from Streptomyces sp. GS-1 and its application as dehairing agent. Biocatalysis and Agricultural Biotechnology, 25, 101590. DOI: https://doi.org/10.1016/j.bcab.2020.101590
Sathya Prabhu, D., Apoorva, S., Nandita, J., Chamy, P., & Devi Rajeswari, V. (2018). Purification of protease enzyme from the leaf, seed and pod samples of Vicia faba L. International Food Research Journal, 25(5).
Segel, I. (1976). Biochem. calculations, 273-277: New York, John Wiley and Sons.
Sharma, M., Gat, Y., Arya, S., Kumar, V., Panghal, A., & Kumar, A. (2019). A review on microbial alkaline protease: an essential tool for various industrial approaches. Industrial Biotechnology, 15(2), 69-78. DOI: https://doi.org/10.1089/ind.2018.0032
Silva, A. V. d., Nascimento, J. M., Rodrigues, C. H., Nascimento, D. C. S., Costa, R. M. P. B., Marques, D. A. V., . . . Porto, A. L. F. (2020). Partial purification of fibrinolytic and fibrinogenolytic protease from Gliricidia sepium seeds by aqueous two-phase system. Biocatalysis and Agricultural Biotechnology, 27, 101669. DOI: https://doi.org/10.1016/j.bcab.2020.101669
Turk, B., Turk, V., & Turk, D. J. B. c. (1997). Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. 378(3-4), 141-150.
Uday, P., Maheshwari, M., Sharanappa, P., Nafeesa, Z., Kameshwar, V. H., Priya, B. S., & Nanjunda Swamy, S. (2017). Exploring hemostatic and thrombolytic potential of heynein - A cysteine protease from Ervatamia heyneana latex. Journal of ethnopharmacology, 199, 316-322. DOI: https://doi.org/10.1016/j.jep.2016.12.047
Yang, R., Song, J., Gu, Z., & Li, C. (2011). Partial purification and characterisation of cysteine protease in wheat germ. Journal of the Science of Food and Agriculture, 91(13), 2437-2442. DOI: https://doi.org/10.1002/jsfa.4484
Zanphorlin, L. M., Facchini, F. D. A., Vasconcelos, F. N., Bonugli-Santos, R. C., Rodrigues, A., Sette, L. D., . . . Bonilla-Rodriguez, G. O. (2010). Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp. The Journal of Microbiology, 48, 331-336. DOI: https://doi.org/10.1007/s12275-010-9269-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 sghar Ali Shaikh, Muhammad Umer Dahot, Abdul Sajid, Syed Habib Ahmed Naqvi
This work is licensed under a Creative Commons Attribution 4.0 International License.