Role of Next Generation Sequencing (NGS) in Plant Disease Management: A Review

Authors

  • Muhammad Saeed Department of Plant Pathology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan.
  • Zainab Jamil Department of Plant Pathology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan.
  • Tayyab Shehzad Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
  • Syed Zia ul Hasan Hill Fruit Research Station Sunny Bank, Murree, Pakistan.
  • Riffat Bibi Soil and Water Conservation Research Institute Chakwal, Pakistan.
  • Safia Naureen Malik Soil and Water Conservation Research Institute Chakwal, Pakistan.
  • Hafiz Matee-ur-Rehman Department of Plant Pathology, University of Poonch Rawalakot, Azad Jammu and Kashmir
  • Raees Ahmed Department of Plant Pathology University of Poonch Rawlakot, Azad jammu and Kashmir

DOI:

https://doi.org/10.38211/joarps.2023.04.01.61

Keywords:

NGS, Plant, Pathogen, Diagnonis

Abstract

A high throughput technique used to determine a part of the nucleotide sequence of an organism’s genome is called next generation sequencing (NGS). NGS has been Proven revolutionary in genomics. Clinical diagnostics, Plant diseases diagnostic and other aspects of medical are now made possible by sequencing. Techniques of NGS: there are different techniques of NGS which are being used in real life sciences i.e., Illumina sequencing, Pyrosequencing, Roche 454 sequencing and Ion torrent sequencing. All vintage methods like culturing in bacterial, fungal, and viral samples are being suppressed by next generation sequencing. The potential for random metagenomic sequencing of sick samples to find potential pathogens has surfaced with the development of next-generation high-throughput parallel sequencing technology. NGS enables highly efficient, rapid, low-cost DNA or RNA high-throughput sequencing of plant virus and viroids genomes, as well as specific small RNAs generated during infection. Although this technique is not so much familiar in the field of plant diseases. However, its widespread application in agronomic sciences will make it possible to create solutions to future food-related challenges that involve biotic stress.

Downloads

Download data is not yet available.

References

Ahmadian, A., Ehn, M., & Hober, S. (2006). Pyrosequencing: History, biochemistry and future. Clinica Chimica Acta, 363(1-2), 83-94. DOI: https://doi.org/10.1016/j.cccn.2005.04.038

Alinda, A. K., Okoth, P. K., Onamu, R., David, R., Genevieve, T., & Muoma, J. O. (2020). Next generation sequencing platforms for potato virus hunting, surveillance and discovery. African Journal of Bacteriology Research, 12(1), 1-11.

Angly, F. E., Felts, B., Breitbart, M., Salamon, P., Edwards, R. A., Carlson, C., . . . Rohwer, F. (2006). The marine viromes of four oceanic regions. PLoS Biology, 4, e368. DOI: https://doi.org/10.1371/journal.pbio.0040368

Berg, P. (2014). Fred Sanger: A memorial tribute. Paper presented at the Proceedings of the National Academy of Sciences. DOI: https://doi.org/10.1073/pnas.1323264111

Besnard, G., Jühling, F., Chapuis, E., Zedane, L., Lhuillier, E., Mateille, T., & Bellafiore, S. (2014). Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing. Comptes Rendus Biologies, 337(5), 295-301. DOI: https://doi.org/10.1016/j.crvi.2014.03.003

Breitbart, M., Hewson, I., Felts, B., Mahaffy, J. M., Nulton, J., Salamon, P., & Rohwer, F. (2003). Metagenomic analyses of an uncultured viral community from human feces. Journal of Bacteriology, 185, 6220–6223. DOI: https://doi.org/10.1128/JB.185.20.6220-6223.2003

Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., Moran, N. A., . . . Geiser, D. M. (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318(5848), 283-287. DOI: https://doi.org/10.1126/science.1146498

De Vlaminck, I., Khush, K. K., Strehl, C., Kohli, B., Luikart, H., Neff, N. F., . . . Nicolls, M. R. (2013). Temporal response of the human virome to immunosuppression and antiviral therapy. Cell, 155(5), 1178-1187. DOI: https://doi.org/10.1016/j.cell.2013.10.034

Edwards, R. A., Rodriguez-Brito, B., Wegley, L., Haynes, M., Breitbart, M., Peterson, D. M., . . . Rohwer, F. (2006). Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics, 7(1), 1-13. DOI: https://doi.org/10.1186/1471-2164-7-57

Fierer, N., Breitbart, M., Nulton, J., Salamon, P., Lozupone, C., Jones, R., . . . Rayhawk, S. (2007). Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Applied and Environmental Microbiology, 73(21), 7059-7066. DOI: https://doi.org/10.1128/AEM.00358-07

Guo, J. (2016). Rhizosphere metagenomics of three biofuel crops. USA: Michigan State University.

Holley, R. (1968). Alanine transfer RNA, Nobel lecture.

Kircher, M., Heyn, P., & Kelso, J. (2011). Addressing challenges in the production and analysis of illumina sequencing data. BMC Genomics, 12, 1-14. DOI: https://doi.org/10.1186/1471-2164-12-382

Lam, H. Y., Clark, M. J., Chen, R., Chen, R., Natsoulis, G., O'huallachain, M., . . . Gerstein, M. B. (2012). Performance comparison of whole-genome sequencing platforms. Nature Biotechnology, 30(1), 78-82. DOI: https://doi.org/10.1038/nbt.2065

Lecuit, M., & Eloit, M. (2015). The potential of whole genome NGS for infectious disease diagnosis (Vol. 15, pp. 1517-1519): Taylor and Francis. DOI: https://doi.org/10.1586/14737159.2015.1111140

Luo, C., Tsementzi, D., Kyrpides, N., Read, T., & Konstantinidis, K. T. (2012). Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PloS one, 7(2), e30087. DOI: https://doi.org/10.1371/journal.pone.0030087

Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387-402. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., . . . Chen, Z. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057), 376-380. DOI: https://doi.org/10.1146/annurev.genom.9.081307.164359

Merriman, B., D Team, I. T., & Rothberg, J. M. (2012). Progress in ion torrent semiconductor chip based sequencing. Electrophoresis, 33(23), 3397-3417. DOI: https://doi.org/10.1002/elps.201200424

Meyer, M., & Kircher, M. (2010). Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols, 2010(6), 5448. DOI: https://doi.org/10.1101/pdb.prot5448

Mwaipopo, B., Rajamäki, M.-L., Ngowi, N., Nchimbi-Msolla, S., Njau, P. J., Valkonen, J. P., & Mbanzibwa, D. R. (2021). Next-generation sequencing-based detection of common bean viruses in wild plants from Tanzania and their mechanical transmission to common bean plants. Plant Disease, 105(9), 2541-2550. DOI: https://doi.org/10.1094/PDIS-07-20-1420-RE

Palacios, G., Druce, J., Du, L., Tran, T., Birch, C., Briese, T., . Marshall, J. (2008). A new arenavirus in a cluster of fatal transplant-associated diseases. New England Journal of Medicine, 358(10), 991-998. DOI: https://doi.org/10.1056/NEJMoa073785

Poudel, R., Jumpponen, A., Schlatter, D. C., Paulitz, T., Gardener, B. M., Kinkel, L. L., & Garrett, K. (2016). Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology, 106(10), 1083-1096. DOI: https://doi.org/10.1094/PHYTO-02-16-0058-FI

Quail, M. A., Kozarewa, I., Smith, F., Scally, A., Stephens, P. J., Durbin, R., . . . Turner, D. J. (2008). A large genome center's improvements to the Illumina sequencing system. Nature Methods, 5(12), 1005-1010. DOI: https://doi.org/10.1038/nmeth.1270

Ramirez, K. S., Knight, C. G., de Hollander, M., Brearley, F. Q., Constantinides, B., Cotton, A., . . . de Vries, F. T. (2018). Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature microbiology, 3(2), 189-196. DOI: https://doi.org/10.1038/s41564-017-0062-x

Rothberg, J. M., & Leamon, J. H. (2008). The development and impact of 454 sequencing. Nature Biotechnology, 26(10), 1117-1124. DOI: https://doi.org/10.1038/nbt1485

Simner, P. J., Miller, S., & Carroll, K. C. (2018). Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. Clinical Infectious Diseases, 66(5), 778-788. DOI: https://doi.org/10.1093/cid/cix881

Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R.,. Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences, 103(32), 12115-12120. DOI: https://doi.org/10.1073/pnas.0605127103

Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., . . . Smith, H. O. (2004). Environmental genome shotgun sequencing of the Sargasso sea. Science, 304, 66–74. DOI: https://doi.org/10.1126/science.1093857

Williamson, S. J., Rusch, D. B., Yooseph, S., Halpern, A. L., Heidelberg, K. B., Glass, J. I., . Sutton, G. (2008). The Sorcerer II Global Ocean Sampling Expedition: Metagenomic characterization of viruses within aquatic microbial samples. PloS one, 3(1), e1456. DOI: https://doi.org/10.1371/journal.pone.0001456

Yang, S., Johnson, M. A., Hansen, M. A., Bush, E., Li, S., & Vinatzer, B. A. (2022). Metagenomic sequencing for detection and identification of the boxwood blight pathogen Calonectria pseudonaviculata. Scientific reports, 12(1), 1-14. DOI: https://doi.org/10.1038/s41598-022-05381-x

Zhang, T., Breitbart, M., Lee, W. H., Run, J.-Q., Wei, C. L., Soh, S. W. L., . Ruan, Y. (2006). RNA viral community in human feces: Prevalence of plant pathogenic viruses. PLoS Biology, 4(1), e3. DOI: https://doi.org/10.1371/journal.pbio.0040003

Downloads

Published

2023-02-23

How to Cite

Saeed, M., Jamil, Z., Shehzad, T., Hasan, S. Z. ul, Bibi, R., Malik, S. N., … Ahmed, R. (2023). Role of Next Generation Sequencing (NGS) in Plant Disease Management: A Review. Journal of Applied Research in Plant Sciences , 4(01), 512–517. https://doi.org/10.38211/joarps.2023.04.01.61

Most read articles by the same author(s)