Rock Phosphate and Manures with Phosphorus Solubilizing Bacteria Increases the Growth, Yield and Phosphorus Uptake of Okra (Abelmoschus esculentus)

Authors

  • Nasir Rahim Department of Soil and Environmental Sciences, University of Poonch Rawalakot, Azad Jammu & Kashmir, Pakistan.
  • Zaheer Yasin Department of Soil and Environmental Sciences, University of Poonch Rawalakot, Azad Jammu & Kashmir, Pakistan
  • Majid Mahmood Tahir Department of Soil and Environmental Sciences, University of Poonch Rawalakot, Azad Jammu & Kashmir, Pakistan.
  • Afshan Majeed Department of Soil and Environmental Sciences, University of Poonch Rawalakot, Azad Jammu & Kashmir, Pakistan.
  • Abid Yaqub Department of Horticulture, University of Poonch Rawalakot, Azad Jammu & Kashmir, Pakistan.
  • Basharat Mahmood Department of Plant Pathology, University of Poonch Rawalakot

DOI:

https://doi.org/10.38211/joarps.2024.05.226

Keywords:

Phosphorus, Organic and inorganic P fertilizers, Phosphorus solubilizing bacteria, P uptake, Okra growth and yield

Abstract

Phosphorus (P) is one of the most important plant nutrient for increasing soil productivity and sustainable crop production. A pot experiment was conducted to study the effect of seed inoculation by phosphorus solubilizing bacteria (PSB) and organic and mineral P fertilizers on growth, yield and P uptake of okra. Phosphorus was applied at the rate of 90 kg ha-1 in the form of poultry manure (PM); sheep manure (SM) and rock phosphate (RP). Nine treatments were allocated for the experiment having PM, SM and RP alone, organic manures with RP in combination, or a mix of the three with PSB. The result revealed that sole application of SM at three growth stages gave maximum root and shoot growth, which was 75 and 78% more from control respectively. It is concluded that Leaf area (36%), chlorophyll contents (62%), yield (60%) and P uptake (31%) of okra were significantly enhanced by the integrated use of PM+SM+RP+PSB at all growth stages over control. Complementary application of this inoculants with manures and RP most favored okra growth and yield and can be considered as an appropriate substitute for chemical P fertilizer in organic and sustainable agricultural system.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abid, M., S.A. Malik, K. Bilal and R.A. Wajid, 2002. Response of okra (Abelmoschus esculentus L.) to EC and SAR of irrigation water. Int. J. Agri. Biol., 3: 311–314

Abou, E. M., M.M. Hoda, A. Mohammed and Z.F. Fawzy, 2005. Relationship growth, yield of broccoli with increasing N, P or K ratio in a mixture of NPK fertilizers (Brassicooler aceavaritalicaplenck). Ann. Agri. Sci., 43: 791-805

Abu-Zahra, T.R. and A.B. Tahboub, 2008. Effect of organic matter sources on chemical properties of the soil and yield of strawberry under organic farming conditions. World J. App. Sci., 5: 383-388

Adewole, M.B. and A.O. Ilesanmi, 2011. Effects of soil amendments on the nutritional quality of okra (Abelmoschus esculentus L.). J. Soil Sci. Plant Nutr.,3: 45-55

Akande, M.O., F.I. Oluwatoyinbo, J.A. Adediran, K.W. Buari and I.O. Yusuf, 2003. Soil amendments affect the release of P from rock phosphate and the development and yield of okra. J. Veg. Crop Pro., 9: 3–9 DOI: https://doi.org/10.1300/J068v09n02_02

Akande, M.O., F.I. Oluwatoyinbo, C.O. Kayode and F.A. Olowokere, 2006. Response of maize (Zea mays) and okra (Abelmoschus esculentus) intercrop relayed with cowpea (Vigna unguiculata) to different levels of cow dung amended phosphate rock. World J. Agri. Sci., 1: 119-122

Aliyu, L., 2003. Effect of Nitrogen and Phosphorus on the chemical composition anduptake of mineral elements by pepper (capsicum annum L.).Crop Res.,25: 272-279

Arisha, H.M.E., A.A. Gad and S.E. Younes, 2003. Response of some pepper cultivars to organic and mineral nitrogen fertilizer under sandy soil conditions. J. Agri. Res., 30: 1875–99

Babik, J. and K. Elkner, 2002. The effect of nitrogen fertilization and irrigation on yield and quality of broccoli. J. Hort. Sci.,572: 33-43 DOI: https://doi.org/10.17660/ActaHortic.2002.571.2

Bremner, J.M. and C.S. Mulvaney, 1982. Nitrogen total. In: A. L. Page (ed.), Methods of soil analysis. Argon. No. 9, Part 2: Chemical and microbiological properties, 2nd ed., pp: 595-624. Am. Soc. Argon., Madison, WI, USA DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c31

Cabello, M., G. Irrazabal, A.M. Bucsinszky, M. Saparrat and S. Schalamuck, 2005. Effect of an arbuscular mycorrhizal fungus G. mosseae and a rock-phosphate-solubilizing fungus, P. thomii in Menthapiperita growth in a soiless medium. J. Basic Microbiol., 45:182-189 DOI: https://doi.org/10.1002/jobm.200410409

Chabot, R., C.J. Beauchamp, J.W. Kloepper and H Antoun, 1998. Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing rhizobium leguminosarum biovarphaseoli. Soil Biol. Biochem., 30: 1615-1618 DOI: https://doi.org/10.1016/S0038-0717(98)00054-6

Chen, Y.P., P.D. Rekha, A.B. Arun, F.T. Shen, W.A. Lai and C.C. Young, 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol., 34: 33-41 DOI: https://doi.org/10.1016/j.apsoil.2005.12.002

Chein, S.H., R.G. Menon and K. Billingham, 1996. Phosphorus availability from phosphate rock as enhanced by water soluble phosphorus. Soil Sci. Soc. Am. J., 60: 1173-1177 DOI: https://doi.org/10.2136/sssaj1996.03615995006000040031x

Ewulo, B.S., 2005. Effect of poultry dung and cattle manure on chemical properties of clay and sandy clay loam soil. J. Ani. Veter. Advan., 4: 839-841

Fernandez, L.A., P. Zalba. M.A. Gomez and M.A. Sagardoy, 2007. Phosphate solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol. Fert. Soils, 43: 805-809 DOI: https://doi.org/10.1007/s00374-007-0172-3

Jesu, E.I.M. and F.O. Adekayode, 2010. Comparative evaluation of different organic fertilizers on soil fertility improvement, leaf mineral composition and growth performance of African cherry nut (Chrysophyllum albidium L) Seedlings. J. Am. Sci., 8: 217-223

Kaya, C. and D. Higgs, 2002. Response of tomato (lycopersicon esculentum L.) cultivar to foliar application of zinc when grown in sand culture at low zinc. Hort. Sci., 93: 53-64 DOI: https://doi.org/10.1016/S0304-4238(01)00310-7

Khan, Z.A. and S.A. Khan, 1988. Utilization of Pakistan phosphates and its future. UNIDO Proc. First African Regional Consultation on the Fertilizer and Pesticide Industry, Lahore, October. 17-20, pp. 31-49

Khan, M.A., M. Abid, N. Hussain and M.U. Masood, 2005. Effect of phosphorous levels on growth and yield of maize (Zeamays L.) cultivars under saline conditions. Intl. J. Agri. Bio., 3: 511–514

Khan, R., A.R. Gurmani, A.H. Gurmani and M.S. Zia, 2007. Effect of phosphorus application on wheat and rice yield under wheat-rice system. Sarhad, J. Agri., 23:851-856

Manjunath, M.N., P.L. Patil and S.K. Gali, 2006. Effect of organics amended rock phosphate and P-solubilizer on growth, yield and quality of French bean under vertisol of Malaprabha command of north Karnataka. Karnat. J. Agric. Sci., 1: 30-35

Maerere, A.P., G.G. Kimbi and D.L.M. Nonga, 2001. Comparative effectiveness of animal manures on soil chemical properties, yield and root growth of Amaranthus (Amaranthus cruentus L.). As. J. Sci.Tech.,4: 14-21

Mario, A., E. Deeken, T. Varlingen, E. Pinners and S.C.A. Tarn, 1989. Agronomsia, 1st edition,Wageningen, Netherlands, pp. 6-60

McLean, E.O., 1982. Soil pH and lime requirement. In: A.L., Page (ed.), Methods of soil analysis. Part 2: Chemical and Microbiological Properties. pp: 199-224. Amer. Soc. Agron., Madison, WI, USA DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c12

Mehrvarz, S. and M. R. Chaichi, 2008. Effect of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barley (Hordeum vulgare L). Am-Euro. J. Agric. Environ. Sci., 6: 855-860

Menon, R.G., S.H. Chien and A. N. Gadalla, 1991. Phosphate rocks compacted with superphosphates vs. partially acidulated rocks for bean and rice. Soil Sci. Soc. Amer. J., 55:1480-1484 DOI: https://doi.org/10.2136/sssaj1991.03615995005500050047x

Nagaraju, A.P., K. G. Shambulingappa and S. Sridhara, 1995. Efficiency of levels and sources of fertilizer phosphorus and organic manure on growth and yield of cowpea (Vigna unguiculata L). Crop Res., 9: 241-245

Nautiyal, C. S., S. Bhadauria, P. Kumar, H. Lai, R. Mondal and D. Verma, 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. Fed. Euro. Microbial. Soci. Microbiol. Lett., 182: 291-296 DOI: https://doi.org/10.1111/j.1574-6968.2000.tb08910.x

Nelson, D.W. and L.E. Sommers, 1982. Total carbon, organic carbon, and organic matter. In: R.H. Miller, D.R. Keeney (ed.), Methods of Soil Analysis. Agron, No. 9, Part 2: Chemical and Microbiological Properties, 2nd ed., pp. 539–594. Amer. Soc. Agron., Madison, WI, USA

Nkoa, R., J.Y. Coulombe, Desjardins and N. Tremblay, 2001. Towards optimization of growthvia nutrient supply phasing: nitrogen supply phasing increases broccoli (Brassica oleracea) growth and yield. J. Exp. Bot., 52: 821-827 DOI: https://doi.org/10.1093/jexbot/52.357.821

Paul, E.A. and F.E. Clark, 1989. Phosphorus transformation in soil. In: Soil Microbiology and Biochemistry. pp: 224-234. Academic Press Inc., California DOI: https://doi.org/10.1016/B978-0-12-546805-3.50015-1

Powon, M. P., J. N. Aguyoh and V. Mwaja, 2005. Effects of inorganic fertilizers and farmyard manure on growth and tuber yield of potato. Afr. Crop Sci. Conf., 7: 1089-1093

Rajan, S. S. S., J. H. Watkinson and A. G. Sinclair, 1996. Phosphate rock for direct application to soils. Adv. Agron., 57: 77-159 DOI: https://doi.org/10.1016/S0065-2113(08)60923-2

Richardson, A. E., 1994. Soil micro-organisms and phosphate availability. In: C.E. Pankhurst, B.M. Double, V.V.S.R. Gupts and P.R. Grace (eds.), Soil Biota Management in Sustainable Agriculture. pp: 50-62. CSIRO, Melbourne, Australia

Rodríguez, H. and R. Fraga, 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Advan.,17: 319-339 DOI: https://doi.org/10.1016/S0734-9750(99)00014-2

Salehrastin, N., 1999. Biological Fertilizers.Scientific Journal of Soil and Water. Vol. 12. No. 3. Soil and Water Research Institute of Iran

Sample E.C., R.J. Soperand G.J. Racz, 1980. Reactionsof phosphate fertilizers in soils. In: F.E. Khasawneh, E.C. Sample and E.J. Kamprath (eds.), The Role of Phosphorus in Agriculture. pp. 263–310. Am. Soc. Agron., Madison, WI., USA DOI: https://doi.org/10.2134/1980.roleofphosphorus.c12

Shaikh, K. A. A. and M. S. Mohammad, 2009. Enhancing fresh and seed yield of okra and reducing chemical phosphorus fertilizer via using va-mycorrhizal inocualants. W. J. Agric. Sci., 5: 810-818

Sharma, A. K., 2002. Biofertilizers for Sustainable Agriculture. Agron. Ind. Pub., pp. 456

Sharma, S.N., Y.S. shivay, R. Prasad, M.K. Dwivedi, M.R. Davari and S. Kumar, 2010. Relative efficiency of di-ammonium phosphate and mussoorie rock phosphate plus phosphate solubilizing bacteria on productivity and phosphorus balance in rice-potato-mungbean cropping system. J. Plant Nutr., 33: 998-1015 DOI: https://doi.org/10.1080/01904161003728677

Singh, C. P. and A. Amberger, 1998. Solubilization of rock phosphate by humic and fulvic acids extracted from straw compost. Agrochem., 41: 221-228

Soltanpur, P.N. and S. Workman, 1979. Modification of the NH4CO3-DTPA soil test to omit carbon black. Commun. Soil Sci. Plant Ann.,10: 1411–20 DOI: https://doi.org/10.1080/00103627909366996

Steel, R.G.D., J.H. Torrie and D.A. Dickey, 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd eds., McGraw Hill Book Co. Inc. New York

Taha, Z., Sarhan, H. M. Ghurbat and A.T. Jiyan, 2011. Effect of bio and organic fertilizers on growth, yield and fruit quality of summer squash. Sar. J. Agric.,27: 3-7

Tindall, H.D. and R.P. Rice, 1983.Fruit and Vegetable Production in Warm Climates. The Macmillan Press Ltd. Nig., pp. 85

Turan, M., N. Ataoglu and F. Sahin, 2006.Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. J. Sust. Agric., 28: 99-108 DOI: https://doi.org/10.1300/J064v28n03_08

Vazquez, P., G. Holguin, M. Puente, A.E. Cortes and Y. Bashan, 2000. Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi arid coastal lagoon. Biol. Fert. Soils, 30: 460-468 DOI: https://doi.org/10.1007/s003740050024

Vessey, K.J., 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255: 571–586. DOI: https://doi.org/10.1023/A:1026037216893

Wintermans, J.F.G.M and de Mots, 1965. Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochem.Biophys.Acta.,109: 448-453. DOI: https://doi.org/10.1016/0926-6585(65)90170-6

Yahaya, R.A., 2008. Effect of sheep manure, Plant Population and Nitrogen Levels on growth yield components and yield of chilli pepper (Capsicum frutescence L) Unpublished PhD, Dissertation Department of Agronomy Ahmadu BelloUniversity Zaria.

Zapata, F. and H. Axmann, 1995. P32 isotopic techniques for evaluating the agronomic effectiveness of rock phosphate materials. Fert. Res., 41: 189-195 DOI: https://doi.org/10.1007/BF00748308

Downloads

Published

2024-01-06

How to Cite

Rahim, N., Yasin, Z., Tahir, M. M., Majeed, A., Yaqub, A., & Mahmood, B. (2024). Rock Phosphate and Manures with Phosphorus Solubilizing Bacteria Increases the Growth, Yield and Phosphorus Uptake of Okra (Abelmoschus esculentus). Journal of Applied Research in Plant Sciences , 5(01), 111–118. https://doi.org/10.38211/joarps.2024.05.226

Most read articles by the same author(s)