Effect of Organic Manure and Foliar Application of Boron on Morphological and Economic Parameters of Sindh-1 and CKC-3 Cultivars of Cotton Under Semi-arid Climate
DOI:
https://doi.org/10.38211/joarps.2024.05.01.114Keywords:
Cotton, Organic manure, Boron, morpholog, Economic parameters, Semi-arid environmentAbstract
Cotton (Gossypium hirsutum L.) has a central position in agriculture, similarly it adds to Pakistan’s economy as trade profit. Most of the cotton growing areas of Pakistan are deficient in organic matter due to continuous mono-cropping. Concerning these issues, a one-year field research was conducted during Kharif season in 2021 to evaluate the effect of organic manure and foliar application of boron on morphological and economic characters of CKC-3 and Sindh-1 cultivars under semi-arid climate. Treatments included soil applied farmyard manure (FYM) and foliar application of boron (B): T1 = Control (0 FYM + 0 B), T2 = FYM @10 tons/ha1, T3 = 1% B, T4 = 2% B, T5 = FYM @10 tons/ha1 + 1% B, T6 = FYM@10 tons/ha1 + 2% B. Our results suggested that the treatment of soil applied FYM and foliar applied B @ FYM 10 tons/ha1 + 2% B significantly (P≤0.05) influence the morphological characters including, sympodial branches per plant, opened bolls per plant, seed cotton weight per plant (g), seed cotton yield (kg ha-1), lint yield per plant (g), and GOT (%) of both Sindh-1 and CKC-3 cultivars of cotton. However, CKC-3 performed better than Sindh-1 cultivar in most of the growth and yield related parameters under different treatment regimes. Hence, the optimum FYM and B foliar application levels for economical cotton production was considered to be FYM @10 tons/ha1 + 2% boron along with recommended dose of NPK fertilizers under semi-arid climate.
Downloads
References
Ahmed, B. O., M. Inoue and S. Moritani (2010). "Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat." Agricultural water management 97(1): 165-170. DOI: https://doi.org/10.1016/j.agwat.2009.09.001
Bell, R. W. and B. Dell (2008). Micronutrients for sustainable food, feed, fibre and bioenergy production, International Fertilizer Industry Association (IFA).
Broschat, T. (2005). Boron Deficiency in Palms. ENH1012, Fort Lauderdale, FL: University of Florida Extension Service.
Chandra, A., P. Pardha-Saradhi, R. Maikhuri, K. Saxena and K. Rao (2021). "Impact of farm yard manure on cropping cycle in a rainfed agroecosystem of Central Himalaya." Vegetos 34(1): 249-262. DOI: https://doi.org/10.1007/s42535-020-00167-w
Dao, T. and M. Cavigelli (2003). "Mineralizable carbon, nitrogen, and water‐extractable phosphorus release from stockpiled and composted manure and manure‐amended soils." Agronomy Journal 95(2): 405-413. DOI: https://doi.org/10.2134/agronj2003.4050
Fares, A., F. Abbas, A. Ahmad, J. L. Deenik and M. Safeeq (2008). "Response of selected soil physical and hydrologic properties to manure amendment rates, levels, andtypes." Soil science 173(8): 522-533. DOI: https://doi.org/10.1097/SS.0b013e318182b063
GEBALY, S. G. (2011). "studies on the use of mineral and bio nitrogen fertilizer with some of growth regulators on growth and yield of cotton vatiety GIZA 80." Egyptian Journal of Agricultural Research 89(1): 185-201. DOI: https://doi.org/10.21608/ejar.2011.173979
Görmüş, Ö. (2005). "Interactive effect of nitrogen and boron on cotton yield and fiber quality." Turkish journal of agriculture forestry 29(1): 51-59.
Gupta, U. and H. Solanki (2013). "Impact of boron deficiency on plant growth." International journal of bioassays 2(7): 1048-1050.
Hajiboland, R., S. Bahrami-Rad, S. Bastani, R. Tolrà and C. Poschenrieder (2013). "Boron re-translocation in tea (Camellia sinensis (L.) O. Kuntze) plants." Acta physiologiae plantarum 35(8): 2373-2381. DOI: https://doi.org/10.1007/s11738-013-1272-3
Hati, K., K. Mandal, A. Misra, P. Ghosh and K. Bandyopadhyay (2006). "Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India." Bioresource technology 97(16): 2182-2188. DOI: https://doi.org/10.1016/j.biortech.2005.09.033
Islam, M., K. Khalequzzaman and M. Kaikobad (2014). Effect of organic and inorganic source of N on cotton yield, Annual Research Report 2014, Cotton Development Board, Ministry of ….
Jan, M., S. Hussain, M. Haq, J. Iqbal, I. Ahmad, M. Aslam and A. Faiz (2020). "Effect of farm yard manure and compost application on transgenic BT cotton varieties." Pakistan Journal of Agricultural Research 33(2): 371-380. DOI: https://doi.org/10.17582/journal.pjar/2020/33.2.371.380
Kassem, M., S. Hamoda and M. Emara (2009). "Response of cotton growth and yield to foliar application with the growth regulators Indole Acetic acid (IAA) and Kinetin." Journal of Plant Production 34(3): 1983-1991. DOI: https://doi.org/10.21608/jpp.2009.116970
Palm, C. A., C. N. Gachengo, R. J. Delve, G. Cadisch and K. E. Giller (2001). "Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database." Agriculture, ecosystems environment 83(1-2): 27-42. DOI: https://doi.org/10.1016/S0167-8809(00)00267-X
Patnude, E. and S. Nelson (2012). "Boron deficiency of palms in Hawaii."
Qamar, R., A. Hussain, H. Sardar, N. Sarwar, H. M. R. Javeed, A. Maqbool and M. Hussain (2020). "Soil applied boron (B) improves growth, yield and fiber quality traits of cotton grown on calcareous saline soil." Plos one 15(8): e0231805. DOI: https://doi.org/10.1371/journal.pone.0231805
Rana, A. W., A. Ejaz and S. H. Shikoh (2020). Cotton crop: A situational analysis of Pakistan, Intl Food Policy Res Inst. DOI: https://doi.org/10.2499/p15738coll2.133702
Rashid, A. and E. Rafique (2002). Boron Deficiency in Cotton Grown in Calcareous Soils of Pakistan. Boron in plant and animal nutrition, Springer: 357-362. DOI: https://doi.org/10.1007/978-1-4615-0607-2_36
Sawan, Z., A. Mohamed, R. Sakr and A. Tarrad (2000). "Effect of kinetin concentration and methods of application on seed germination, yield components, yield and fiber properties of the Egyptian cotton (Gossypium barbadense)." Environmental experimental botany 44(1): 59-68. DOI: https://doi.org/10.1016/S0098-8472(00)00054-X
Soomro, A., R. Anjum, A. Soomro, A. Memmon and S. Bano (2001). "Optimum sowing time for new commercial cotton variety, Marvi (CRIS-5A)." The Pakistan Cottons 45: 25-28.
Tewari, R. K., P. Kumar and P. N. Sharma (2010). "Morphology and oxidative physiology of boron-deficient mulberry plants." Tree physiology 30(1): 68-77. DOI: https://doi.org/10.1093/treephys/tpp093
Townsend, T. (2020). World natural fibre production and employment. Handbook of natural fibres, Elsevier: 15-36. DOI: https://doi.org/10.1016/B978-0-12-818398-4.00002-5
Wang, N., C. Yang, Z. Pan, Y. Liu and S. a. Peng (2015). "Boron deficiency in woody plants: various responses and tolerance mechanisms." Frontiers in Plant Science 6: 916. DOI: https://doi.org/10.3389/fpls.2015.00916
Wendel, J. F., C. Brubaker, I. Alvarez, R. Cronn and J. M. Stewart (2009). Evolution and natural history of the cotton genus. Genetics and genomics of cotton, Springer: 3-22. DOI: https://doi.org/10.1007/978-0-387-70810-2_1
Yeates, S., G. Constable and T. McCumstie (2010). "Irrigated cotton in the tropical dry season. III: Impact of temperature, cultivar and sowing date on fibre quality." Field Crops Research 116(3): 300-307. DOI: https://doi.org/10.1016/j.fcr.2010.01.006
Zhao, D. and D. M. Oosterhuis (2003). "Cotton growth and physiological responses to boron deficiency." Journal of plant nutrition 26(4): 855-867. DOI: https://doi.org/10.1081/PLN-120018570
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Abdul Hafeez Laghari, Jan Muhammad
This work is licensed under a Creative Commons Attribution 4.0 International License.