Ecological Diversity of Lycopersicon esculentum (Tomato) Root Associated Plant Growth Promoting Rhizobacteria (PGPRs)
DOI:
https://doi.org/10.38211/joarps.2024.05.286Keywords:
Nitrogen fixation, Phosphorus solubilizing bacteriaAbstract
Tomato member of family Solanaceae is one amongst the foremost important vegetable crop worldwide. It has its significance due to its nutritive, therapeutic and antioxidant properties. An ecofriendly approach to improve the crop yield is the use of PGPRs which improves the growth of plant through nitrogen fixation, phosphorus solubilization and phyto-hormone production. The present study is to evaluate the biodiversity of such PGPRs and their potential role as biofertilizer for tomato crop. A total eight bacteria were isolated and purified from soil and rhizosphere of tomato plant collected from temperate and tropical rainfed regions of Pakistan including Rawalakot and Attock respectively. Soil texture of Rawalakot and Attock varied from sandy loam to loamy. Plant growth promoting traits like N2 Fixation, P-solubilization and IAA production were determined for all the eight isolates. Maximum P-solubilization was shown by isolates from Attock, AS4 (129.72 µg mL-1) and Rawalakot, RS3 (132.73 µg mL-1) and maximum IAA production was observed in Rawalakot isolates, RS2 (22.237 µg mL-1) followed by Attock isolates, AS3 (49.63 µg mL-1) and AS2 (62.86 µg mL-1). PGPRs were selected with multifunctional properties and were used in plant inoculation experiment to study enhanced growth of tomato plants. Bacterial isolates showed remarkable increase in all growth parameters as compare to uninoculated control. These PGPRs can be best developed for improved development of tomato plants with less dependence on chemical fertilizers.
Downloads
References
Ahmad, S., R. Ahmad, M. Y. Ashraf, M. Ashraf and E. A. Waraich. 2009. Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pak. J. Bot, 41(2): 647-654.
Ahmad, F., I. Ahmad and M. S. Khan. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promotin activities. J. Microbio. research, 163(2):173-181. DOI: https://doi.org/10.1016/j.micres.2006.04.001
Ali, S. Z., V. Sandhya, M.Grover, V. R. Linga, and V. Bandi, 2011. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J. Plant Interactions, 6(4): 239-246. DOI: https://doi.org/10.1080/17429145.2010.545147
Bano, A., and M. Fatima, 2009. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. J. Biol and Fertility of Soils, 45(4): 405-413. DOI: https://doi.org/10.1007/s00374-008-0344-9
Bhattacharyya, P. N., and D. K. Jha, 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. W. J. Microbio, and Biotech., 28(4): 1327-1350. DOI: https://doi.org/10.1007/s11274-011-0979-9
Bhatia, P., N. Ashwath, T. Senaratna, and D. Midmore 2004. Tissue culture studies of tomato (Lycopersicon esculentum). J. Plant Cell, Tissue and Organ Culture, 78(1): 1-21. DOI: https://doi.org/10.1023/B:TICU.0000020430.08558.6e
Bunt, J. S., and Rovira, A. D. 1955. The effect of temperature and heat treatment on soil metabolism. J. Soil Sci. 16, 129. DOI: https://doi.org/10.1111/j.1365-2389.1955.tb00837.x
Burd, G. I., D.G.Dixon, and B.R. Glick 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian J. Microbio., 46(3): 237-245. DOI: https://doi.org/10.1139/w99-143
Çakmakçı, R., G. Mosber, A. H.Milton, F. Alatürk, and B. Ali 2020. The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. J. C. microbio., 77(4): 564-577. DOI: https://doi.org/10.1007/s00284-020-01917-4
Çakmakçı, R., M. Erat, U. Erdoğan and M.F. Dönmez 2007. The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J. P. Nutri. & Soil Sci, 170(2): 288-295. DOI: https://doi.org/10.1002/jpln.200625105
Cocking, E. C. Endophytic colonization of plant roots by nitrogen-fixing bacteria.J. Plant and soil, 252(1): 169-175. DOI: https://doi.org/10.1023/A:1024106605806
Edi–Premono, M.A. Moawad, and P.L.G. Vleck, 1996. Effect of phosphate solubilizing Pseudmonas putida on the growth of maize and its survival in the rhizosphere. Indonasian J. Crop Sci., 11: 13–23
Etesami, H., and D.K. Maheshwari 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. J. Ecotoxicol. and env. Saf., 156: 225-246. DOI: https://doi.org/10.1016/j.ecoenv.2018.03.013
Ganeshan, G., and K.A. Manoj. 2005. Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J. Plant Interac., 1(3): 123-13. DOI: https://doi.org/10.1080/17429140600907043
Jalal, A., Júnior, E. F., & Teixeira Filho, M. C. M. (2024). Interaction of zinc mineral nutrition and plant growth-promoting bacteria in tropical agricultural systems: a review. Plants, 13(5), 571. DOI: https://doi.org/10.3390/plants13050571
Kausar, A., R. Shahzad, J. Iqbal, N. Muhammad, S. Ibrahim and M. Iqbal. 2020. Development of new organic-inorganic, hybrid bionanocomposite from cellulose and clay for enhanced removal of Drimarine Yellow HF-3GL dye. Int. J. biol. Macromolecules, 149: 1059-1071. DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.012
Kashyap, A. S., Manzar, N., Rajawat, M. V. S., Kesharwani, A. K., Singh, R. P., Dubey, S. C., ... & Singh, D. (2021). Screening and biocontrol potential of rhizobacteria native to gangetic plains and hilly regions to induce systemic resistance and promote plant growth in chilli against bacterial wilt disease. Plants, 10(10), 2125. DOI: https://doi.org/10.3390/plants10102125
Kannapiran, E. and V.Sri Ramkumar 2011. Inoculation effect of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth of black gram (Phaseolus mungo Roxb; Eng). Annals of Biol. Res., 2(5): 615-621.
Kalayu, G. 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int. J. Agro., 2019. DOI: https://doi.org/10.1155/2019/4917256
Kamnev A., Shchelochkov A., Perfiliev Y. D. Tarantilis P. A., and Polissiou M. G. (2001). Spectroscopic investigation of indole-3-acetic acid interaction with iron (III). J Mol Struct 563:565-572. DOI: https://doi.org/10.1016/S0022-2860(00)00911-X
Kamran, S., I. Shahid, D.N. Baig, M. Rizwan, K.A Malik, K. A., and S Mehnaz 2017. Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front. J. in Microbiol, 8: 2593. DOI: https://doi.org/10.3389/fmicb.2017.02593
Khalid, A., M. Arshad, Z.A. Zahir, 2004. Screening plant growth‐promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbio., 96(3): 473-480. DOI: https://doi.org/10.1046/j.1365-2672.2003.02161.x
Khan, M. S., A. Zaidi, and E. Ahmad 2014. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. Springer, Cham. 31-62. DOI: https://doi.org/10.1007/978-3-319-08216-5_2
Kidoglu, F., A. Gül, H. Ozaktan, and Y. Tüzel, 2007. Effect of rhizobacteria on plant growth of different vegetables. In Int. Sym. on High Tech. for Greenhouse Sys. Manag: Greensys 2007 801 (pp. 1471-1478). DOI: https://doi.org/10.17660/ActaHortic.2008.801.181
Knapp, S., L. Bohs, M. Nee, and D.M. Spooner 2004. Solanaceae a model for linking genomics with biodiversity. J. Comp. & Fun. Geno., 5(3): 285-291. DOI: https://doi.org/10.1002/cfg.393
Kumla, J., N. Suwannarach, K. Matsui and S. Lumyong 2020. Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand. 15(1): e0227478. DOI: https://doi.org/10.1371/journal.pone.0227478
Mahmood, S., A. Hussain, Z. Saeed and M. Athar 2005. Germination and seedling growth of corn (Zea mays L.) under varying levels of copper and zinc. Int. J. Env. Sci. & Tech., 2(3): 269-274. DOI: https://doi.org/10.1007/BF03325886
Malik, D. K. and S. S. Sindhu, S. S. 2011. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). J. Physiol. & Mol. Bio. Plants, 17(1): 25-32. DOI: https://doi.org/10.1007/s12298-010-0041-7
Mirza, M. S., S. Mehnaz, P. Normand, C. Prigent-Combaret, Y. Moënne-Loccoz, R. Bally and K. A. Malik 2006. Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. J. Bio. & Fert. of Soils, 43(2): 163-170. DOI: https://doi.org/10.1007/s00374-006-0074-9
Naqqash, T., A. Imran, S. Hameed, M. Shahid, A. Majeed, J. Iqbal and K.A. Malik 2020. First Report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Scientific reports, 10(1): 1-14. DOI: https://doi.org/10.1038/s41598-020-69782-6
Naqqash, T., S. A. Imran, M. K. Hanif, A. Majeed and J. D. van Elsas 2016. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Frontiers J. in plant science, 7, 144. DOI: https://doi.org/10.3389/fpls.2016.00144
Okon, Y, Albrecht, S.L. and Burris, R., 1977. Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl. environ. Microbiol., 33: 85-88. DOI: https://doi.org/10.1128/aem.33.1.85-88.1977
Pieterse, C. M., A. Leon-Reyes, S. Van der Ent and S.C. Van Wees, 2009. Networking by small-molecule hormones in plant immunity. J. Nat. Chem. Biol., 5(5): 308-316. DOI: https://doi.org/10.1038/nchembio.164
Satyaprakash, M., T. Nikitha, E. U. B. Reddi, B. Sadhana and S. S. Vani, 2017. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int. J. Curr. Microbiol. & App. Sci., 6(4): 2133-2144. DOI: https://doi.org/10.20546/ijcmas.2017.604.251
Sakai, M., H. Ozawa, H. Futamata and T. Matsuguchi 1996. Effect of calcium ion on spinach root colonization by fluorescent pseudomonas through chemotaxis. J. Soil sci. & plant nut., 42(2): 323-331. DOI: https://doi.org/10.1080/00380768.1996.10415102
Saravanan, V. S., M. Madhaiyan and M. Thangaraju 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. J. Chemosphere, 66(9): 1794-1798. DOI: https://doi.org/10.1016/j.chemosphere.2006.07.067
Son, H. J., G. T. Park, M.S. Cha, M. S and Heo, M. S. 2006. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. J. Biores. Tech., 97(2): 204-210. DOI: https://doi.org/10.1016/j.biortech.2005.02.021
Staccone, A., W. Liao, S. Perakis, J. Compton, C. M. Clark, D. Menge, 2020. A spatially explicit, empirical estimate of tree‐based biological nitrogen fixation in forests of the United States. Global Biogeochemical Cycles, 34(2): e2019GB006241. DOI: https://doi.org/10.1029/2019GB006241
Santana, E. B., E. L. S. Marques and J. C. T. Dias, J. C. T. 2016. Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth. J. Gen.& Mol. Res., 15(4): 15048729. DOI: https://doi.org/10.4238/gmr.15048729
Tyssandier, V., C. Feillet-Coudray, C. Caris-Veyrat, J. C. Guilland, C. Coudray, B. ureau and P. Borel, P. 2004. Effect of tomato product consumption on the plasma status of antioxidant microconstituents and on the plasma total antioxidant capacity in healthy subjects. J. Amer. Coll. Nutr., 23(2): 148-156. DOI: https://doi.org/10.1080/07315724.2004.10719355
Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. J. Plant & soil, 255(2):571-586 DOI: https://doi.org/10.1023/A:1026037216893
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Javeria Khan, Naheed Malik, Sohail Hameed
This work is licensed under a Creative Commons Attribution 4.0 International License.