Seed Germination and Vegetative Growth of Petunia (Petunia hybrida) Genotypes to Salt Stress

Authors

  • Niaz Ahmed Wahocho Sindh Agriculture University Tando Jam, Pakistan
  • Rais Mujeeb-ur-Rehman Laghari Department of Horticulture, Sindh Agriculture University Tandojam, Pakistan
  • Khalid Hussain Talpur Department of Soil Sciences, Sindh Agriculture University, Tandojam, Pakistan
  • Muzamil Farooque Jamali Department of Horticulture, Sindh Agriculture University Tandojam, Pakistan
  • Waqas Ahmad College of Agriculture, Bahauddin Zakariya University Bahadur Campus Layyah, Pakistan.
  • Ahmed Naqi Shah Department of Agronomy, Sindh Agriculture University Tandojam, Sindh, Pak
  • Sohail Ahmed Otho Department of Entomology, Sindh Agriculture University Tandojam, Pakistan
  • Piar Ali Shar Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojam, Pakistan
  • Safdar Ali Wahocho Department of Horticulture, Sindh Agriculture University Tandojam, Pakistan

DOI:

https://doi.org/10.38211/joarps.2023.04.02.173

Keywords:

Salt stress, seed germination, vegetative growth, petunia genotypes

Abstract

Salinity is a brutal threat to sustainability of crop production and exhibits injurious effect on major plant processes including protein synthesis, cell division and photosynthetic activity. Germination and early growth of plants are most susceptible to salinity effect in comparison to other growth stages. In this context, the seed emergence and early vegetative growth of flowers needs to be tested properly. The pot based study was conducted in Completely Randomized Design (CRD) with three replicates at Sindh Agriculture University Tandojam. The goal of this investigation was to explore the performance of petunia plants to salt stress environment at early growth stage.  Two petunia varieties (V1= Prism blue, V2= Hala lop petunia rose) were evaluated against six levels of salt stress (T1 = Canal irrigation water [Control], T2 = 3 dS m-1, T3 = 5 dS m-1, T4 = 7 dS m-1, T5 = 9 dS m-1, T6 = 11 dS m-1).The results showed that there was an inverse effect of salt stress on all the traits examined and with each increased level of salinity in irrigation water; the values of petunia plant traits were significantly decreased. The petunia grown in pots given only canal water (control) revealed better performance for germination and growth attributes. It was further noted that that salt stress up to 3 dS m-1 level was generally tolerated by petunia. Among petunia varieties, Hala lop petunia rose performance was better and showed relative tolerance to salt stress over Prism blue, but in most cases the differences were insignificant (P>0.05).

Downloads

Download data is not yet available.

References

Abdul-baki, A.A. & Anderson J. D. (1970). Viability and leaching of sugars from germinating barley. Crop Sciences. 10:31-34. DOI: https://doi.org/10.2135/cropsci1970.0011183X001000010012x

Ahenger, M. A., Aziz, U., Alsahi, A. A., Alyemeni, M. N., & Ahmed, P. (2019). Influence of Exogenous Salicylic Acid and Nitric Oxide on Growth, Photosynthesis, and Ascorbate-Glutathione Cycle in Salt Stressed Vigna angularis. Biomolecules. 10(1):42. DOI: https://doi.org/10.3390/biom10010042

Alam, A., Juraimi A.S., Yusop M.R., Hamid A.A., Hakim A. (2014). Morpho-physiological and mineral nutrient characterization of 45 collected Purslane (Portulaca oleracea L.) accessions. Bragantia. 73: 426–437. DOI: https://doi.org/10.1590/1678-4499.253

Akbarimoghaddam H., Galavi M., Ghanbari A. & Panjehkeh N. (211). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences. 9: 43–50.

Bartha C., Fodorpataki L., Martinez-Ballesta M. del C., Popescu O. & Carvajal M. (2015). Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. Journal of Applied Botany and Food Quality. 88: 42–48.

Dubey, R.K., Kukal, S. S., & Kalsi, H.S. (2013). Evaluation of different organic growing media for growth and flowering of petunia. Communications in soil science and plant analysis.44(12): 1777-1785. DOI: https://doi.org/10.1080/00103624.2013.790398

Di Mola I., Rouphael Y., Colla G., Fagnano M., Paradiso R. & Mori M. (2017). Morpho-physiological traits and nitrate content of greenhouse lettuce as affected by irrigation with saline water. HortScience. 52: 1716–1721. DOI: https://doi.org/10.21273/HORTSCI12501-17

Ferraz, M. V., Franco, C. F., Batista, G. S. & Pivetta, K. F. L. (2016). Salinity on the germination of seed and index of germination speed of three ornamental species. CAMPINAS-SP 22 (2): 196-201. DOI: https://doi.org/10.14295/oh.v22i2.919

Foolad, M.R. (2004). Recent advances in genetics of salt tolerance in tomato. Plant Cell, Tissue and Organ Culture. 76, 101–119. DOI: https://doi.org/10.1023/B:TICU.0000007308.47608.88

Gerats, T. & Strommer, J. (2009). Petunia: Evolutionary, Developmental and Physiological Genetics. Springer; 2nd ed. 445. DOI: https://doi.org/10.1007/978-0-387-84796-2

Gulser, F., Çıg, A., Gokkaya, T.H., & Atmaca, H. (2019). Effects of Different Growing Media on Plant Growth and Nutrient Contents of Petunia (Petunia hybrida). International Journal of Secondary Metabolite. 6(4): 302-309. DOI: https://doi.org/10.21448/ijsm.554693

Gu M.F., Li N., Shao T.Y., Long X.H., Brestic M., Shao H.B., Li J.B. & Mbarki, S. (2016). Accumulation capacity of ions in cabbage(Brassica oleracea L.) supplied with sea water. Plant, Soil and Environment. 62: 314–320. DOI: https://doi.org/10.17221/771/2015-PSE

Guo, Q., Meng, L., Han, J., Mao, P., Tian, X., Zheng, M., & Mur, L.A.J. (2020). SOS1 is a key systemic regulator of salt secretion and K+/Na+ homeostasis in the recretohalophyte Kareliniacaspia. Environmental and Experimental Botany. (177) 104098 DOI: https://doi.org/10.1016/j.envexpbot.2020.104098

Hnilickova, H., Frantisek, H., Matyas, O & Vaclav, H. (2019). Effect of salt stress on growth, electrolyte leakage , Na+ and K- content in selected plant species. Plant, Soil and Environment. 65(2): 90–96 DOI: https://doi.org/10.17221/620/2018-PSE

Hassen, A., Maher, S. & Chrif, H. (2013). Effect of Salt Stress (NaCl) on Germination and Early Seedling Parameters of Three Pepper Cultivars (Capsicum annuum L.). Journal of Stress Physiology and Biochemistry. (0): 326-167.

Jamali, M.F., Jamali, F.A., Miano, T.F., Abbasi, Z.A., Otho, S.A., Talpur, K.H., Wahocho, N.A. & Jakhro, M.I. (2021). Growth and flowering response of marigold (Tagetes erecta) to salt stress. Pakistan Journal of Agricultural Research, 34(4): 792-798. DOI: https://doi.org/10.17582/journal.pjar/2021/34.4.792.798

James R.A., Blake C., Byrt C.S. & Munns R. (2011). Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany. 62:2939–2947. DOI: https://doi.org/10.1093/jxb/err003

Karajol, K. & Naik, G.R. (2011). Seed germination rate as a phenotypical marker for the selection of NaCl tolerant cultivars in Pigeon pea (Cajanus cajan L. Mill sp.) World Journal of Science and Technology. (2): 2231 –2587.

Kessler, J.R. (1998). Greenhouse production of petunias. ANR-1118, Auburn University.

Kaouther, Z., Ben, F.M., Mani, F. & Hannachi, C. (2012). Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.) Journal of Stress Physiology and Biochemistry. 8: 236-252.

Larsen, S. U. & Andreasen, C. (2004). Light and heavy turf-grass seeds differ in germination percentage and mean germination thermal time. Crop Science. (44): 1710-1720. DOI: https://doi.org/10.2135/cropsci2004.1710

Lee, M. K & Lersel, M.V. (2008). Sodium chloride effects on growth, morphology, and physiology of chrysanthemum (Chrysanthemum morifolium). Hort Science. 43(6):1888–1891. DOI: https://doi.org/10.21273/HORTSCI.43.6.1888

Li, W. & Li, Q. (2017). Effect of environmental salt stress on plants and the molecular mechanism of salt stress tolerance. International Journal of Environmental Sciences & Natural Resources. 7(3): 230-255. DOI: https://doi.org/10.19080/IJESNR.2017.07.555714

Locke, E.L., Stushnoff, C, Pennycookeand, J. C. & Jones, M. (2004). Effects of Salinity and Drought stresses on Petunia Transformed for α-Galactosidase Expression. HortScience. 39 (4):897. DOI: https://doi.org/10.21273/HORTSCI.39.4.897D

Mubarak, K., Gabar, S. M, Aboukila, E., Brengi, S.H. (2022). Possibility of overcoming salt stress of lettuce plants using humic acid and mycorrhiza. Journal of the Advances in Agricultural Researches. 27(01) 193-210. DOI: https://doi.org/10.21608/jalexu.2022.121604.1047

Manzoor, M., Shahid, S.A. & Baluch, M.H. (2001). Economics of floriculture in Pakistan: a case study of Lahore market. Pakistan Economic and Social Review Volume XXXIX, (2) : 87-102.

Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59: 651-681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

Mahajan S. & Tuteja N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics. 444:139–158. DOI: https://doi.org/10.1016/j.abb.2005.10.018

Nguyen, T.D., Xuan, P.T., Truong, H.T.H. & Tran, K.D. (2017). Influence of Foliar Fertilizers on Growth and Development of Petunia hybrida in Winter-Spring. Journal of Agricultural Science and Technology. 7: 40-47. DOI: https://doi.org/10.17265/2161-6256/2017.10.006S

Nikalje G.C., Srivastava A.K., Pandey G.K. & Suprasanna P. (2017): Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degradation and Development. 29: 1081–1095. DOI: https://doi.org/10.1002/ldr.2819

Ngele, B. A., Nkang, A. E., Effa, E.A. & Agba, M.I. (2020). Response of Parkia Biglobosa (JACQ.) Benth. To Salt Stress Following Inoculation with Arbuscular Mycorrhizal Fungus and Rhizobium Strain. International Journal of Engineering and Advanced Technology. 10(04)108-118.

Porcel, R., Aroca, R. & Ruiz-Lozano, J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development. 32, 181–200. DOI: https://doi.org/10.1007/s13593-011-0029-x

Pizarro, G.H.V. (2011). Salt tolerance in floriculture species: Characterization of salt tolerance and the cloning of a novel petunia gene involved in the trehalose sugar biosynthesis (Trehalose-6-phosphate synthase I) and evaluating its potential role as a stress osmolyte in mutant yeasts. M.Sc. Thesis submitted to the Graduate School, Cornell University.

Sardoei, A. S., Shahdadneghad, M., Yazdi, M. R. & Gholamshahi, S. (2014). Growth response of Petunia hybrida to zinc sulphate and salicylic acid. International Journal of Advanced Biological and Biomedical Research. 2(3): 622-627.

Singh, B. K., Rakesh, E.S., Yadav, V.P.S. & Singh, D. K. (2010). Adoption of commercial cut flower production technology in Meerut. Indian Research Journal of Extension Education. 10 (1):50-53.

Statistix, 2006. Analytical Software. Statistix 8.1 User’s Manual. Analytical Software, Tallahssee, Florida.

Torbaghan, M.E. (2012). Effect of salt stress on germination and some growth parameters of marigold (Calendula officinalis L.). Plant Science Journal. (1):07-19.

USDA. (2010). Floriculture Crops Summary National Agricultural Statistics Service.

Wahocho. N.A., Hamayun, L., Memon, N.N., Baloch, Q. B., Shah, A, N., Abbasi, Z, A., Gola, A, Q., Wahocha, S, A., Jakhro, M, I., Abro, J, A. (2021). Evaluation of salt stress genotypes of chillies (Capsicum annuum L.) at seedling stage. Pure and Applied Biology 10(01): 142-151. DOI: https://doi.org/10.19045/bspab.2021.100016

Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt stressed cucumber (Cucumis sativus L.). Plant Science. 167:527–533. DOI: https://doi.org/10.1016/j.plantsci.2004.04.020

Zhu, J.K. (2007). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology. 19(8): 765-768. DOI: https://doi.org/10.1038/90824

Zhani, K., Mariem, B.F., Fardaous, M. & Cherif, H. (2014). Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.). Journal of Stress Physiology & Biochemistry. 8(4): 236-252.

Zelm, E.V., Zhang, Y. & Testerink, C. (2020). Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology. 71(01): 403-433 DOI: https://doi.org/10.1146/annurev-arplant-050718-100005

Downloads

Published

2023-05-26

How to Cite

Wahocho, N. A., Laghari , R. M.- ur-R., Talpur, K. H., Jamali, M. F., Ahmad, W., Shah, A. N., … Wahocho, S. A. (2023). Seed Germination and Vegetative Growth of Petunia (Petunia hybrida) Genotypes to Salt Stress. Journal of Applied Research in Plant Sciences , 4(02), 553–565. https://doi.org/10.38211/joarps.2023.04.02.173

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)