Combining Ability Analysis and Genetic Studies of Stripe Rust Resistance in Bread Wheat Genotypes

Authors

  • Mir Yar Muhammad Khan Talpur Department of Plant Breeding and Genetics, Sindh Agriculture University, Tandojam.
  • Abdul Wahid Baloch Department of Plant Breeding and Genetics, Sindh Agriculture University, Tandojam.
  • Muhammad Jurial Baloch Department of Plant Breeding and Genetics, Sindh Agriculture University, Tandojam.
  • Muhammad Azeem Asad Nuclear Institute of Agriculture and Biology, Faisalabad,

DOI:

https://doi.org/10.38211/joarps.2024.05.237

Keywords:

Bread wheat, combining ability, stripe rust, yield traits

Abstract

A set of eighteen F1 and F2 experimental crosses were grown in a randomized complete block design (RCBD) with three replications. From lines, TD-1 was on top by showing greater and significant general combining ability (GCA) effects for maximum number characters including grain yield in both (F1 and F2) populations, while tester Benazir remained exceptional by showing higher and significant specific combining ability (GCA) effects for majority traits including grain yield in F1 and F2 populations, as a result, both parents would contribute significantly to the improvement of the bread wheat. Regarding the SCA effects in F1 population, the hybrids TD-1 × Pakistan-2013, TJ-83 × Benazir, and NIA-Sundar × NIA-Sarang and from F2 populations, the crosses TD-1 × Benazir, TJ-83 × Benazir, Kiran-95 × NIA-Sarang and NIA-Amber × Pakistan-2013 expressed desirable and maximum SCA effects for number of traits including grain yield, thus may be preferred in future wheat breeding programs. Disease reaction on selected 18 F2 populations was performed, the introgression stripe rust resistance showed single dominant gene. The genetic analysis reported the involvement of major genes for stripe rust resistance. These findings could be used to grow high-yielding wheat lines that could have a profitable yield in stripe rust-prone areas.

Downloads

Download data is not yet available.

References

Abdelkhalik, S., Mingliang, D., Jian, G., Hongsheng, L., Shahzad, A., Asim, M., Hong, Z., & Mujun, Y. (2019). Analyzing combining ability and heterosis of term photo sensitive genic male sterile wheat lines for hybrid development. Turkish Journal of Field Crops, 24(1): 98-105. DOI: https://doi.org/10.17557/tjfc.571725

Afzal, F., Chaudhari, S.K., Gul, A., Farooq, A., Ali, Hassan., Nisar, S., Sarfraz, B., Shehzadi, K.J., & Kazi, A.M. (2015). Bread wheat (Triticum aestivum L.) under biotic and abiotic stresses: An overview. Crop Production and Global Environmental Issues, 293-217. DOI: https://doi.org/10.1007/978-3-319-23162-4_13

Ali, M.B. (2019). Combining ability of physiological and yield traits of bread wheat diallel crosses under timely and late sowing dates. Egyptian Journal of Agronomy, 41(2): 159-181. DOI: https://doi.org/10.21608/agro.2019.15182.1172

Altinkut, A., Kazan, K., Ipekci, Z., & Gozukirmizi, N. (2001). Tolerance to paraquat is correlated with the traits associated water stress tolerance in segregating F2 populations of barley and wheat. Euphytica, 121: 81-86. DOI: https://doi.org/10.1023/A:1012067711200

Amadabade, J., Arora, A., & Sahu, H. (2014). Combining ability analysis for yield contributing characters in chickpea. Electronic Journal of Plant Breeding, 5(4): 664-670.

Aslam, R., Munawar, M., & Salam, A. 2014. Genetic architecture of yield components accessed through line × tester analysis in wheat (Triticum aestivum L.). Universal Journal of Plant Science, 2(5): 93-96. DOI: https://doi.org/10.13189/ujps.2014.020501

Ayoob, M.H. (2020). Combining ability analysis, estimation of heterosis, and some genetic parameters using half diallel cross in bread wheat (Triticum aestivum L.). Journal of Education and Science, 29(1): 93-106. DOI: https://doi.org/10.33899/edusj.2020.164365

Bajaniya, N.A., Pansuriya, A. G., Vekaria, D. M., Singh, C., & Savaliya, J. J. (2019). Combining ability analysis for grain yield and its components in durum wheat (Triticum durum Desf.). Indian Journal of Pure and Applied Biosciences, 7(4): 217-224. DOI: https://doi.org/10.18782/2320-7051.7664

Beddow, J. M., Pardey, P. G., Chai, Y., Hurley, T. M., Kriticos, D. J., Braun, H. J., ... & Yonow, T. (2015). Research investment implications of shifts in the global geography of wheat stripe rust. Nature Plants, 1(10), 1-5. DOI: https://doi.org/10.1038/nplants.2015.132

Bilwal, B.B., Vadodariya, K. V., Rajkumar, B. K., Lahane, G. R., & Shihare, N. D. (2018). Combining ability analysis for seed cotton yield and its component traits in cotton (Gossypium hirsutum L.). International Journal of Current Microbiology and Applied Science, 7(7): 3005-3010. DOI: https://doi.org/10.20546/ijcmas.2018.707.351

Channa, S.A., Tian, H., Mohammed, M. I., Zhang, R., Faisal, S., Guo, Y., Klima, M., Stamm, M., & Hu, S. (2018). Heterosis and combining ability analysis in Chinese semi-winter 3 exotic accessions of rapeseed (Brassica napus L.). Euphytica, 214(134): 1-19. DOI: https://doi.org/10.1007/s10681-018-2216-1

Chaurasiya, J.P., Singh, M., Yadav, R. K., & Singh, L. (2018). Heterosis and combining ability analysis in Indian mustard (Brassica juncea (L.) Czern and Coss.). Journal of Pharmacognosy and Phytochemistry, 7(2): 604-609.

Chen, X. (2005). Epidemiology and control of stripe rust (Puccinia striiformisf .sp. tritici) on wheat. Canadian Journal of Plant Pathology, 27: 314-337. DOI: https://doi.org/10.1080/07060660509507230

Chikuta, S., Odong, T., Kabi, F., & Rubaihayo, P. (2017). Combining ability and heterosis of selected grain and forage dual purpose sorghum genotypes. Journal of Agriculture Science, 9(2): 122-130. DOI: https://doi.org/10.5539/jas.v9n2p122

Dedaniya, A.P., Pansuriya, A. G., Vekaria, D. M., Memon, J. T., & Vekariya, T. A. (2019). Combining ability analysis for yield and its components in bread wheat (Triticum aestivum L.). Electronic Journal of Plant Breeding, 10(3): 1005-1010. DOI: https://doi.org/10.5958/0975-928X.2019.00129.7

Desale, C.S., Mehta, D.R.&Singh, A.P. (2014). Combining ability analysis in bread wheat. Journal of Wheat Research, 6: 25-28.

Din, K., Khan, N. U., Gul, S., Khan, S. U., Khalil, I. H., Khan, S. A., Ali, S., Ali, N., Bibi, Z., Afridi, K., Ishaq, M., & Khalil, I.A. (2020). Line by tester combining ability analysis for earliness and yield traits in bread wheat (Triticum aestivum L.). The Journal of Animal and Plant Sciences, 31(2): 529-541. DOI: https://doi.org/10.36899/JAPS.2021.2.0242

Farooq,M.U., Ishaaq, I.,Maqboo, R., Aslam, I., Naqvi, S. M. T. A.,& Mustafa, S. (2019). Heritability, genetic gain and detection of gene action in hexaploid wheat for yield and its related attributes. Agriculture and Food, 4(1): 56-72. DOI: https://doi.org/10.3934/agrfood.2019.1.56

Gebreslasie, Z.S., Huang, S., Zhan, G., Badebo, A., Zeng, Q., Wu, J., Wang, Q., Liu, S., Huang, L., Wang, X., Kang, Z., & Han, D. (2020). Stripe rust resistance genes in a set of Ethiopian bread wheat cultivars and breeding lines. Euphytica, 216: 1-14. DOI: https://doi.org/10.1007/s10681-019-2541-z

Griffing, B. R. U. C. E. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian journal of biological sciences, 9(4), 463-493. DOI: https://doi.org/10.1071/BI9560463

Grover, G., Sharma, A., Srivastava, P., Kaur, J., & Bains, N. S. (2019). Genetic analysis of stripe rust resistance in European winter wheat genotypes. Euphytica, 215: 57. DOI: https://doi.org/10.1007/s10681-019-2380-y

Gul, S., Uddin, R., Khan, N. U., Khan, M. S., Khan, S. U.,& Goher, R. (2018). Heterotic and genetic effects in intra specific populations of Brassica napus L. Pakistan Journal of Botany, 50(5): 1951-1963.

Gul, S., Uddin, R., Khan, N. U., Khan, S. U., Ali, S., Ali, N., Khan, M. S., Ibrahim, M., Goher, R., Saeed, M.,& Hussain, D. (2019). Heterotic response and combining ability analysis in F1 diallel populations of (Brassica napus L.). Pakistan Journal of Botany, 51(6): 2129-2141. DOI: https://doi.org/10.30848/PJB2019-6(36)

Hama-Amin, T.N., & Towfiq, I. S. (2019). Estimation of some genetic parameters using line × tester analysis of common wheat (Triticum aestivumL.). Applied Ecology and Environmental Research, 17(4): 9735-9752. DOI: https://doi.org/10.15666/aeer/1704_97359752

Hayman, B. I. (1954). The theory and analysis of diallel crosses. Genetics, 39(6), 789. DOI: https://doi.org/10.1093/genetics/39.6.789

Hovmøller, M.S., Sørensen, C. K., Walter, S., & Justesen, A. F. (2011). Diversity of Puccinia striiformis on cereals and grasses. Annual Review Phytopathology, 49: 197–217. DOI: https://doi.org/10.1146/annurev-phyto-072910-095230

Ishaq, M., Ahmad, G., Afridi, K., Ali, M., Khan, T. U., Shah, I. A., Ahmad, B., Ahmad, N., Ahmad, I., Saleem, A., & Miraj, M. (2018). Combining ability and inheritance studies for morphological and yield contributing attributes through line × tester mating design in wheat (Triticum aestivum L.). Pure and Applied Biology, 7(1): 160-168. DOI: https://doi.org/10.19045/bspab.2018.70019

Jeeterwal, R.C., Sharma, L. D., & Anju, N. (2017). Combining ability studies through diallel analysis in pearl millet [Pennisetum glaucum (L.) R.Br.] under varying environmental conditions. Journal of Pharmacognosy and Phytochemistry, 6(4): 1083-1088.

Johnson, R.,&Law, C. N. (1975). Genetic control of durable resistance to yellow rust (Puccinia striiformis) in Hybride de Bersee's wheat cultivar. Annals of Applied Biology, 81: 385–391. DOI: https://doi.org/10.1111/j.1744-7348.1975.tb01654.x

Kalhoro, F. A., Rajpar, A. A., Kalhoro, S. A., Mahar, A., Ali, A., Otho, S. A., ... & Baloch, Z. A. (2015). Heterosis and combing ability in F1 population of hexaploid wheat (Triticum aestivum L.). American Journal of Plant Sciences, 6(07), 1011. DOI: https://doi.org/10.4236/ajps.2015.67107

Kandil, A.A., Sharief, A. E., Hasnaa, S. M., & Gomaa, G. (2016). Estimating general and specific combining ability in bread wheat (Triticum aestivum L.). International Journal of Agricultural Research, 8(2): 37-44.

Khokhar, A.A., Nizamani, F. G., Rind, R. A., Nizamani, M. M., Khokhar, M. U., Shah, A.,Nizam ani, A. L.,& Rind, M. R. (2019). Combining ability estimates in 6 x 6 half diallel crosses of bread wheat (Triticum aestiviumL.). Pure and Applied Biology, 8(3): 1980-1990. DOI: https://doi.org/10.19045/bspab.2019.80142

Kutlu, I.,&Sirel. Z. (2019). Using line × tester method and heterotic grouping to select high yielding genotypes of bread wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 24(2): 185-194. DOI: https://doi.org/10.17557/tjfc.643546

Lal, K., Krishna, R., Ali, H., & Kant, R. (2012). Combining ability analysis for yield and its components in indian mustard (Brassica junceaL. Czern and Coss). Trends in Bioscience, 5(3): 225-230.

Li, H., Feng, J., Xu, X., Lin, R., Wang, F.,&Xu. S. (2018). Genetic analysis and location of a resistance gene for Puccinia striiformis f. sp. tritici in wheat cultivar Zhengmai 7698. Journal of Genetics, 97(4): 931-937. DOI: https://doi.org/10.1007/s12041-018-0986-9

Line, R.F., & Chen, X.M. (1995). Successes in breeding for and managing durable resistance to wheat rusts. Plant Diseases, 79: 1254-1255.

Mather, K., & Jinks, J.L. (1982). Biometrical Genetics. Cornell University Press, New York DOI: https://doi.org/10.1007/978-1-4899-3406-2

Mclntosh, R.A. and G.N. Brown. 1997. Anticipatory breeding for resistance to rust diseases in wheat. Annual Review of Phytopathology, 35: 311-326. DOI: https://doi.org/10.1146/annurev.phyto.35.1.311

Mclntosh, R.A., C.R. Wellings and R.F. Park. 1995. Wheat rusts: an atlas of resistance genes. CSIRO Publi., Victoria, Australia. pp. 200. DOI: https://doi.org/10.1071/9780643101463

Noor, N.,&Qayyum, A. (2020). Genetics of physiological, fiber and yield contributing traits in cotton grown under normal and water stress conditions. International Journal of Agriculture Biology, 6(23): 1158-1164.

Olivera, P.D., Millet, E., Anikster, Y., & Steffenson, B. J. (2008). Genetics of resistance to wheat leaf rust, stem rust, and powdery mildew in Aegilops sharonensis. Phytopathology, 98(3): 353-358. DOI: https://doi.org/10.1094/PHYTO-98-3-0353

Parveen, N., Kanwal, A., Amin, E., Shahzadi, F., Aleem, S., Tahir, M., . & Najeebullah, M. (2018). Assessment of heritable variation and best combining genotypes for grain yield and its attributes in bread wheat. American Journal of Plant Sciences, 9(08), 1688. DOI: https://doi.org/10.4236/ajps.2018.98122

Patel, H.N. (2017). Combining ability analysis for yield and its components in bread wheat. Electronic Journal of Plant Breeding, 8(2): 404-408. DOI: https://doi.org/10.5958/0975-928X.2017.00062.X

Pedersen, W.L., & Leath, S. (1988). Pyramiding major genes for resistance to maintain residual effects. Annual Review of Phytopathology, 26: 369-378. DOI: https://doi.org/10.1146/annurev.py.26.090188.002101

Peterson, R.F., Campbell, A. B., & Hannah, A. E. (1948). A diagram scale for estimating rust severity on leaves and stems of cereals. Canadian Journal of Research, 26: 4496-500. DOI: https://doi.org/10.1139/cjr48c-033

Rahimi, M., Rabiei, B., Samizadeh, H.,&Ghasemi, A. K. (2010). Combining ability and heterosis in rice (Oryza sativa L.) cultivars. Journal of Agriculture Technology, 12: 223-231.

Rajput, R.S., & Kandalkar, V. S. (2018). Combining ability and heterosis for grain yield and its attributing traits in bread wheat (Triticum aestivum L.). Journal of Pharmacognosy and Phytochemistry, 7(2): 113-119.

Reddy, K.B., Reddy, V. C., Ahmed, M. L., Naidu, T. C. M., && Srinivasarao, V. (2017). Combining ability analysis for seed cotton yield and quality traits in upland cotton (Gossypium hirsutumL.). Electronic Journal of Plant Breeding, 8(1): 142-152. DOI: https://doi.org/10.5958/0975-928X.2017.00020.5

Rizwan, M., Sadaqat, H. A., Iqbal, M. A., & Awan, F. S. (2020). Genetic assessment and combining ability analyses of achene yield and oil quality traits in (Helianthus annuus L.) hybrids. Pakistan Journal of Agriculture Sciences, 57(1): 101-108.

Roelfs, A. P., Singh, R. P., & Saari, E. E. (1992). Rust disease of wheat: concepts and methods of disease management. CIMMYT, Mexico. Pp. 81.

Saeed, M.,&Khalil, I. H. (2017). Combining ability and narrow-sense heritability in wheat (Triticum aestivum L.) under rainfed environment. Sarhad Journal of Agriculture, 33(1): 22-29. DOI: https://doi.org/10.17582/journal.sja/2017.33.1.22.29

Schlegel, R.H.J. (2010). Dictionary of Plant Breeding. CRC Press, Boca Raton.

Sharma, V., Dodiya, N., Dubey, R., & Khan, R. (2019). Combining ability analysis in bread wheat (Triticum aestivum (L.) Em. Thell) under different environmental conditions. Bangladesh Journal of Botany, 48(1): 85-93. DOI: https://doi.org/10.3329/bjb.v48i1.47419

Sharma-Poudyal, D., Chen, X. M., Wan, A. M., Zhan, G. M., Kang, Z. S., Cao, S. Q., & Patzek, L. J. (2013). Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Disease, 97(3), 379-386. DOI: https://doi.org/10.1094/PDIS-01-12-0078-RE

Singh, R.K. and B.D. Choudhry. 1979. Biometrical Methods in Quantitative Genetic Analysis, pp. 191-200, Haryana Agricultural University, Hisar, India.

Sumíková, T., & Hanzalova, A. (2010). Multiplex PCR assay to detect rust resistance genes Lr26 and Lr37 in wheat. Czech Journal of Genetics and Plant Breeding, 46(2), 85-89. DOI: https://doi.org/10.17221/32/2010-CJGPB

Thakur, G., Madakemohekar, A., Kamboj, D., & Bindal, S. (2019). Identification of good combiner and study of heterosis in indigenous wheat variety (Triticum aestivum L.) for yield and its component traits. Plant Cell Biotechnology and Molecular Biology, 20(13-14): 587-594.

Tiwari, R., Marker, S., & Meghawal, D. R. (2017). Combining ability estimates for spike characters in F1 hybrids developed through diallel crosses among macaroni wheat (Triticum durum Desf.) genotypes. Journal of Pharmacognosy and Phytochemistry, 6(2): 237-241.

Uddin, M.S., Jahan, N., Rahman, M. Z., & Hossain, K. M. W. (2017). Growth and yield response of wheat genotypes to salinity at different growth stages. International Journal of Agronomy and Agriculture Research, 11(2): 60-67.

Wellings, C.R. (2011). Global status of stripe rust: a review of historical and current threats. Euphytica, 179(1): 129-141. DOI: https://doi.org/10.1007/s10681-011-0360-y

Wolko, J., A. Dobrzycka, J. Bocianowski and I.B. Broda. 2019. Estimation of heterosis for yield-related traits for single cross and three-way cross hybrids of oilseed rape (Brassica napus L.). Euphytica, 215(156): 1-17. DOI: https://doi.org/10.1007/s10681-019-2482-6

Wu, X. L., Wang, J. W., Cheng, Y. K., Ye, X. L., Li, W., Pu, Z. E., ... & Chen, G. Y. (2016). Inheritance and molecular mapping of an all-stage stripe rust resistance gene derived from the Chinese common wheat landrace “Yilongtuomai”. Journal of Heredity, 107(5), 463-470. DOI: https://doi.org/10.1093/jhered/esw032

Younas, A., Sadaqat, H. A., Kashif, M., Ahmed, N.,& Farooq, M. (2020). Combining ability and heterosis for grain iron biofortification in bread wheat. Journal of Science and Food Agriculture, 100(4):1570–1576. DOI: https://doi.org/10.1002/jsfa.10165

Zakiullah., M.F. Khan, M. Mohibullah, M. Iqbal, Irfanullah, Faheemullah, M. Urooj and U. Arif. 2019. Combining ability analysis for morphological traits in 6 × 6 diallel crosses of maize (Zea mays L.). Sarhad Journal of Agriculture, 35(1): 182-186. DOI: https://doi.org/10.17582/journal.sja/2019/35.1.182.186

Zaman, M.A., Khatun, T., Hanafi, M. M., & Sahebi, M. (2017). Genetic analysis of rust resistance genes in global wheat cultivars: an overview, Biotechnology and Biotechnological Equipment, 31: 431-445 DOI: https://doi.org/10.1080/13102818.2017.1304180

Downloads

Published

2024-03-30

How to Cite

Talpur, M. Y. M. K., Baloch, A. W., Baloch, M. J., & Asad, M. A. (2024). Combining Ability Analysis and Genetic Studies of Stripe Rust Resistance in Bread Wheat Genotypes. Journal of Applied Research in Plant Sciences , 5(02), 135–148. https://doi.org/10.38211/joarps.2024.05.237

Similar Articles

<< < 3 4 5 6 7 8 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)